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Preface (2nd edition) 

Ten years have passed since the first edition of ‘Landslide-generated Impulse Waves in 
Reservoirs – Basics and Computation’ was published. During this period, this so-called 
impulse wave manual has been widely applied by dam operators, engineering compa-
nies, dam safety agencies and research institutes around the world. In addition to an 
improved emergency planning for existing reservoirs, the manual’s computational 
procedure proved to be an inexpensive method to obtain a first indication of an impulse 
wave event’s magnitude during the preliminary design phase of new reservoir projects. 
If a potential impulse wave risk is identified at an early stage of the design process, 
more extensive and prototype-specific methods including physical hydraulic modelling 
and numerical simulations can be conducted to develop mitigation measures. Moreover, 
in imminent emergency situations, the complementary spreadsheet-based computational 
tool allowed for ad-hoc wave height and run-up estimations in quasi no time.        

Besides the presentation of a coherent computational procedure, one of the first edi-
tion’s main objectives was to provide practitioners with an overview of the state-of-the-
art in impulse wave research. As a result, also research gaps existing at that time had 
been identified. In combination with the authors’ own experiences in applying the man-
ual for hazard assessment studies, these gaps led to the initiation of further research 
efforts. The main results of these studies have been included in the present new edition. 
Revised and new topics include, amongst others: slide velocity estimation, 3D impulse 
wave generation and propagation, overland flow, water body geometries between 2D 
and 3D and edge waves. Furthermore, additional examples were included and the com-
putational tool has been revised. 

The Dam Safety Section of the Swiss Federal Office of Energy SFOE, which com-
missioned this work, is acknowledged for co-funding the preparation of this second 
edition. Especially the continuous interest and support of Dr. Georges R. Darbre for 
putting impulse wave research into practice is to be emphasised.  

Zurich, November 2019 Frederic M. Evers, Valentin Heller, Helge Fuchs, 
Willi H. Hager and Robert M. Boes 
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Preface (1st edition) 

Impulse waves generated in natural lakes and reservoirs by the impact of landslides may 
cause damages during run-up shores or against dams. Particular attention has, in this 
context, to be given to dams and in particular to embankments dams which, if over-
topped, may suffer serious damages or even fail completely. It is, therefore, of great 
importance that the size of such waves and their run-up height on the shore or dam face 
are known. 

Over the past thirty years the VAW has carried out a number of research projects on 
impulse waves, and this manual presents the results of this research together with avail-
able international literature on the topic. In addition, it gives an explanation of a compu-
tation procedure that enables forecast values for all relevant parameters to be deter-
mined. This makes possible emergency planning and allows preventive action, for 
instance precautionary lowering of the lake or reservoir, to be taken in good time. 

The objective of this manual is to make the research results available to practising 
engineers in appropriate form. The results of these computations may still result in 
estimations to certain extent so it is necessary, as so often in engineering design, to 
include safety factors in the computations. In many cases the possible errors are so large 
that a hydraulic model test or a numerical simulation has to be resorted to. Nonetheless, 
the order of magnitude of the characteristics of the impulse waves can be estimated. 

We wish to express our thanks to the Dam Safety Section of the Swiss Federal Of-
fice of Energy SFOE, which commissioned this work, for all their cooperation, and to 
Dr. Andreas Huber for his critical comments. Thanks also to Mr. Ian David Clarke for 
the translation of the German to this English version. 

This manual, as well as the spread sheets, are available in electronic form on the 
VAW-Website www.vaw.ethz.ch under “News & Events”, “Latest VAW Reports”. We 
hope that this manual finds a wide readership. 

Zurich, February 2009 Valentin Heller, Willi H. Hager and Hans-Erwin Minor 
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Summary 

Landslide-generated impulse waves are typically caused by landslides, rockfalls, shore 
instabilities, snow avalanches or glacier calvings in oceans, bays, lakes or reservoirs. 
They are particularly relevant for the Alpine environment because of steep valley sides, 
possible large slide masses and impact velocities and the great number of reservoirs. In 
this manual, a state-of-the-art on the impulse wave generation and its effects on dams 
are presented including a computational procedure. Based on this method, engineers or 
natural scientists may predict the hazards originating from impulse waves efficiently 
and economically. The 1st edition of this manual was published in 2009. This 2nd edition 
includes both updates of existing and new computational approaches for additional 
hydraulic processes. 

The introduction in Chapter 1 contains background information on the topic and 
compares the available methods dealing with landslide-generated impulse waves. The 
method presented in this manual is based on generally applicable equations derived 
from hydraulic model tests. Chapter 2 introduces basic principles of the water wave 
theory. The computational procedure is presented in Chapter 3 and shown in Figure 3-1. 
It is based on the findings of impulse wave generation and its effects on dams. The 
computational procedure (Figure 3-1) includes two steps: in Step 1 the generally appli-
cable equations are applied according to Chapter 3, whereas in Step 2 the effects not 
contained in Step 1 such as the effective instead of the idealised reservoir geometry are 
considered according to Chapter 4. 

In Step 1, the mass movement is modelled as a granular slide. To analyse the effect 
of impulse waves on dams, the wave height, amplitude, period and length are important. 
These are computed with the equations of Heller and Hager (2010) and Evers et al. 
(2019) as a function of the slide parameters. Two extreme cases for estimating the wave 
parameters are considered: (a) laterally constricted (2D) and (b) free radial propagation 
of the impulse waves (3D). The wave generation in both (a) and (b) depend on the 
identical parameters, whereas these for the wave propagation are not identical. Once the 
necessary wave parameters in front of the dam are determined, the run-up height and 
the overtopping volume may be computed according to Evers and Boes (2019) and 
Kobel et al. (2017), respectively. Potential overland flow on horizontal shorelines is 
covered by the equations of Fuchs and Hager (2015). The force effects on dams are 
computed using the method of Ramsden (1996). This method is first applied as if the 
dam would be vertical since the horizontal force component is independent from the 
dam inclination. The additional vertical force component for inclined dams is then 
computed assuming static wave pressure. If an impulse wave partially overtops a dam, 
only a partial water pressure has to be considered resulting in a reduction method. 

Once the results from Step 1 are available, the effects of the geometrical differences 
to the idealised extreme cases (a) and (b) have to be quantified in Step 2 according to 
Chapter 4. These differences may result from the prototype reservoir geometry differing 
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from the idealised 2D or 3D geometries, or by the non-granular mass characteristics. 
The impulse wave parameters may considerably differ due to these effects. The present-
ed method of Ruffini et al. (2019) allows for impulse wave height estimation in inter-
mediate reservoir geometries between 2D and 3D. Approaches for the assessment of 
edge wave propagation along the shoreline perpendicular to the slide impact direction 
include equations of Heller and Spinneken (2015) and McFall and Fritz (2017). Moreo-
ver, the extent of underwater landslide deposits is covered by the equations of Fuchs et 
al. (2013). Step 2 is also required if the computational tool is applied, because these 
include only the generally applicable equations from Step 1. Finally, Sections 4.6 and 
4.7 contain a sensitivity analysis and some reservoir safety aspects.  

Chapter 5 includes four computation examples and the application instructions for 
the computational tool. In Chapter 6 the conclusions are presented. 

Although the computational results, such as the run-up height, seem to be exact, it 
should be kept in mind that the present method results in estimations. Safety allowances 
for all planned actions have to be considered. Predictions that are more exact may 
emerge from a prototype-specific model test or numerical simulations.  
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1 Introduction 

1.1 Overview 

Impulse waves typically occur in open oceans, bays, lakes and reservoirs as the result of 
landslides, rockfalls, shore instabilities, avalanches or glacier calvings. They are classed 
as gravity waves and can, in extreme cases, result in the overtopping of dams, with 
catastrophic consequences. Alpine regions face a high risk of such events in view of 
their steep valley flanks, their potentially large slide volumes, with high impact veloci-
ties, and their large number of reservoirs (Heller 2007). 

One extreme event was the Vaiont reservoir catastrophe which occurred in 1963. 
After the reservoir had been impounded for the first time behind the 261.60 m high 
double-curved arch dam, the left valley flank became unstable. About 300 million m3 of 
earth and rock, twice the active reservoir capacity, slid into the reservoir. Displaced 
reservoir water overtopped the dam crest, to a depth of at least 70 m, and swept through 
the village of Longarone. About 2,000 people lost their lives. The dam itself withstood 
this extreme event with almost no damage (Schnitter 1964). 

Impulse waves have also occurred in Switzerland or, as a precaution, have been ana-
lysed numerically or investigated in hydraulic models. Examples are Walensee (Hu-
ber 1975) and Urnersee (Müller and Schurter 1993). Huber (1982) summarised about 
fifty documented events in Switzerland over the past 600 years. On 20 June 2007, a 
rockfall into Lake Lucerne, near Obermatt, created an impulse wave, which caused 
slight damage when it flowed up into the village of Weggis, on the opposite shore of the 
lake (Fuchs and Boes 2010). 

Schuster and Wieczorek (2002) presented several possible causes of mass move-
ments. In addition to classic scenarios such as earthquake and intense rainfall, they 
described 46 cases of slides which followed rapid changes in the water level of reser-
voirs, for instance during first impounding. Only in rare cases has it been possible to 
arrest the mass movement; one example is Clyde reservoir in New Zealand (MacFarlane 
and Jenks 1996). In most cases only passive measures to minimise damage are possible 
and include evacuation of the population, reservoir drawdown, controlled blasting and, 
when designing the dam, provision of adequate freeboard. For early risk assessment of a 
threatening slide, empirical equations can help to determine the potential danger. 

Generally applicable equations are quickly and easily used in practice. They can 
provide an initial estimate of the most important wave properties, such as wave height 
and run-up height at the dam, and this information on the effects of the impulse waves 
can help when taking decisions on any further preventive measures which may be need-
ed. However, such equations provide only a first estimate, of the wave height for in-
stance, as they largely neglect the geometry of the reservoir (Section 4.2). But impulse 
waves may be greatly affected by water depth variations or by the shape of the reservoir 
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basin. More extensive methods are available for more precise analysis, as discussed in 
Section 1.2. 

The aim of this manual is to formulate a practical computational procedure using the 
generally applicable equations that are in current use. Computational examples and a 
computational tool support this procedure. 

The equations described in this manual are based principally on granular slide mate-
rial. The parameters of the mass movement are uniformly referred to as slide, for exam-
ple slide thickness, although other mass movement types such as fall or topple exist. 
The mass movement types and their influence on wave parameters are discussed in 
Section 4.4. 
 

 
Figure 1-1 Three initial positions of slides before impulse wave generation. 

 
Figure 1-1 shows three initial slide positions before impulse wave generation. Slides 

can be activated subaerial, partially submerged or fully submerged. In this manual, only 
slide masses located above the water level are considered, as these represent most cases 
encountered in Switzerland. Slides activated partially or fully submerged are less com-
mon in Switzerland and, as most develop unnoticed, no time is available for their obser-
vation or predictive analysis. 
 

 
Figure 1-2 The three phases of an impulse wave above a horizontal reservoir bed: (1) slide impact with 

wave generation, (2) wave propagation with wave transformation and (3) impact and run-up 
of the impulse wave with load transfer to the dam and, in some cases, overtopping of the 
dam (after Heller 2007). 

 
Figure 1-2 shows the three phases of impulse wave development above a horizontal 

reservoir bed: (1) slide impact with wave generation, (2) wave propagation with wave 
transformation and (3) impact and run-up of the impulse wave with load transfer to a 
dam and in some cases overtopping of the dam. In narrow reservoirs, phase (2) may not 
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occur. The mechanisms of phases (1) and (2) are both covered by the same equations, 
which are discussed in Section 3.2. Phase (3) is described in Sections 3.3 to 3.5. 

1.2 Methods for predicting landslide-generated impulse waves 

In this manual, a computational procedure, based on generally applicable equations, is 
developed for the assessment of landslide-generated impulse waves. Firstly, for a better 
appraisal of the advantages and disadvantages of this procedure, the available methods 
relating to landslide-generated impulse waves are discussed. Basically the following 
five methods exist: 

(i) Generally applicable equations developed from physical model tests
(ii) Prototype-specific model tests
(iii) Numerical simulations
(iv) Empirical equations derived from field data
(v) Analytical investigations

Table 1-1 Comparison of the five methods for the prediction of landslide-generated impulse waves. 

Table 1-1 compares the five methods, based on the following criteria: the quality of 
the results, time requirements, costs, the user of each method, the clarity of the results 
and the efforts needed to determine the governing parameters required for each proce-
dure. These include the parameters describing the topography of the reservoir and the 
slide geometry as well as the slide characteristics. Table 1-1 shows that, in general, the 
more precise the results the greater the time expended and cost. Likewise, the effort 
needed to determine the governing parameters increases accordingly; this is because 
more data are needed about the geometry of the reservoir and the slide, as well as about 
the slide characteristics. As explained in Section 1.2, the two last methods, (iv) and (v), 
are still not fully developed, and this means that methods (i) to (iii) are the most suitable 
for use in practice. The quality of the results and the time and cost of numerical simula-
tions depend above all on the equations applied and the simplifications made. Table 1-1 
shows where the strengths of the generally applicable equations lie: an engineer may 
make an assessment of, for example, the run-up height R at a dam at little cost and in a 
short time, and only moderate effort is needed to determine the governing parameters. 
Particular points relating to each method, not mentioned in Table 1-1, will now be 
discussed individually and illustrated with examples taken from the technical literature. 
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(i) Generally applicable equations developed from physical model tests 
 

Figure 1-3 shows two generally applicable physcial model tests in (a) a wave basin 
and (b) a wave channel. In addition to the points indicated in Table 1-1, the follow-
ing advantage and disadvantages of this method need to be mentioned: 

 
+ The results aid in deciding whether more precise investigations with a pro-

totype-specific model or numerical simulations are necessary. 
− Scale effects in too small models cannot be ignored and model effects (re-

flection, refraction, diffraction etc.) occur with geometrical variations from 
the prototype. 

− Special cases are often not investigated, since the available equations are 
limited on simple geometries. 

 

 
Figure 1-3 Generally applicable model tests: (a) rigid body prior to impact into a wave basin (Panizzo 

et al. 2005) and (b) granular slide material during impact into a wave channel (Heller et     
al. 2008). 

 
This method is often the only possibility when calculations have to be done quickly, 
for instance when a landslide already shows signs of slow movement. In order to be 
able to neglect scale effects, the following rules of thumb may be followed: the still 
water depth in the slide impact zone should be h ≥ 0.200 m (Heller et al. 2008) and 
in addition the wave period should be T > 0.35 s (Hughes 1993), such that the waves 
(as gravity waves) are dominated by gravity and not by surface tension forces (as 
capillary waves). For a prototype in which h = 50 m, the first rule leads to a mini-
mum scale of 1:250. An associated reservoir surface area of one million m2 would 
correspond to a modelled area of 1,000,000/2502 = 16 m2. More precise data on 
scale effects related to impulse waves were defined by Heller et al. (2008). Model 
effects, i.e. effects arising mainly from differences between the geometry of the res-
ervoir basin to the model may be taken into account qualitatively by employing the 
methods described in Sections 4.2 to 4.4. 
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(ii) Prototype-specific model tests 
 

Prototype-specific model tests were carried out for example by Müller and Schurter 
(1993) for planned rock blasting on Urnersee, as shown in Figure 1-4(a), as well as 
by the Western Canada Hydraulic Laboratories (WCHL 1970) for a potential slide 
above Mica reservoir as shown in Figure 1-4(b). In addition to the points shown in 
Table 1-1, the following disadvantages of this method should be noted:  

 
− Scale effects cannot be neglected in too small models. 
− Model effects may occur with geometric simplifications. 
 

 
Figure 1-4 Prototype-specific model tests: (a) for planned rock blasting on Urnersee (Müller and 

Schurter 1993) and (b) for Mica reservoir (Western Canada Hydraulic Laboratories 1970). 

 
To allow scale effects to be neglected, the same rules of thumb apply as for method 
(i): h ≥ 0.200 m in the impact zone and T > 0.35 s. For a prototype with h = 50 m, 
the first of these criteria gives a minimum scale of 1:250, which means that the cor-
responding reservoir area of 1,000,000 m2, according to (i), will be represented by 
16 m2 in the model. Therefore, it is often impossible to model the entire reservoir 
with negligible scale effects, because of space limitations and the corresponding 
cost. An alternative method is to model only the impact zone and the wave run-up 
zone and then attempt to estimate the wave transformation between them. 
Knowledge of the reservoir geometry is essential for the precise determination of the 
wave characteristics, especially when shallow-water or intermediate-water waves 
are expected. This is because waves of these types are affected by the reservoir bed 
(Section 2.1). For deep-water waves, which are not affected by the reservoir bed, the 
reservoir geometry must be known above all in the slide impact and wave run-up 
zones. 
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(iii) Numerical simulations 
 

A comprehensive review about numerical modelling of landslide-generated impulse 
waves has been presented by Yavari-Ramshe and Ataie-Ashtiani (2016). The 
landslide is commonly modelled rigid or as a deformable mass with different 
rheologies. Discrete Element Method modelling is now also possible where each 
individual grain and grain interactions in a granular landslide are resolved (Kesseler 
et al. 2018). Several numerical approaches are available to predict the generation of 
landslide-generated impulse waves, involving both open source codes (e.g. 
DualSPHysics (Heller et al. 2016, Vacondio et al. 2013), OpenFOAM (Chen et al. 
2018), THETIS (Abadie et al. 2012)) and commercial codes such as ANSYS Fluent 
or Flow-3D (Gabl et al. 2015). These computationally expensive approaches are 
also suitable for wave propagation and inundation if the water body is sufficiently 
small. An accurate simulation of the wave propagation and inundation in larger 
water bodies is commonly based on the multi-layer non-linear shallow-water 
equations (e.g. SWASH (Ruffini et al. 2019)), the Boussinesq equations (e.g. 
FUNWAVE-TVD (Abadie et al. 2012)) or even the full Navier-Stokes equations 
(e.g. NHWAVE (Ma et al. 2012)). Whichever approach is chosen, it needs to be 
carefully calibrated and validated to avoid misleading predictions.  

The most accurate results for large water bodies with reasonable computer re-
sources may be achieved by coupling a more comprehensive (and also more compu-
tationally expensive) numerical approach for the violent wave generation process 
(e.g. Direct Numerical Simulations (Abadie et al. 2010), Reynolds Averaged Na-
vier-Stokes Equations (Bascarini 2010), Large Eddy Simulations (Liu et al. 2005), 
Smoothed Particle Hydrodynamics SPH (Tan and Chen 2017, Heller et al. 2016, 
Vacondio et al. 2013)) with a less computationally expensive wave propagation and 
inundation approach (e.g. multi-layer non-linear shallow-water models (Ruffini et 
al. 2019), Boussinesq models (Fuhrman and Madsen 2009), two-phase finite volume 
approaches (Viroulet et al. 2013)). The selected wave propagation and inundation 
model should be able to model the key physical processes such as wave non-
linearity, frequency dispersion, diffraction, refraction, shoaling and wave breaking 
(Gylfadóttir et al. 2017, Harbitz et al. 2014). Energy dissipation due to bottom fric-
tion is generally less relevant, but may still result in non-negligible wave decay for 
waves close to or in the shallow-water regime. Such coupled approaches have been 
presented for subaerial landslide-generated impulse waves by Abadie et al. (2012) 
who used the Navier-Stokes model THETIS coupled with the Boussinesq model 
FUNWAVE-TVD in 3D, Tan et al. (2018) where DualSPHysics, based on SPH, 
was coupled with the multi-layer non-linear shallow-water equation model SWASH 
in 3D (Figure 1-5) and Viroulet et al. (2013) who used SPHysics coupled with Ger-
ris, a two-phase finite volume approach, for wave propagation in 2D. 
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Figure 1-5 Numerical simulation of subaerial landslide-generated impulse waves at Es Vedrà; (a) initial 

slide position and (b) slide impact with wave propagation modelled with DualSPHysics, 
based on SPH, and (c) wave propagation and inundation modelled with SWASH (based on 
the two-layer non-linear shallow-water equations, Tan et al. 2018). 

 
For smaller water bodies, one of the computationally expensive wave generation 
models may be applied for the entire process, and a wave propagation model is not 
necessary. In the past, the shallow-water equations (Saint-Venant equations) were 
sometimes applied even for wave generation (e.g. Zweifel et al. 2007), given that 
more complex models were computationally too expensive ten years ago. Whilst the 
shallow-water equations may sometimes result in acceptable results for engineering 
applications, they exclude important physical processes (frequency dispersion, 
accurate vertical velocity distribution) which may result in inaccurate predictions, 
particularly for larger water bodies. However, models based on the non-hydrostatic 
non-linear shallow water equations, such as SWASH, can consider frequency 
dispersion and accurately model wave propagation. The increasing computer 
capacity and the access of Graphics Processing Units GPUs allow nowadays for the 
simulation of real-world scenarios, including the site-specific topography and 
bathymetry, within reasonable time scales on a desktop PC equipped with a 
powerful GPU card. For example, the SPH simulation shown in Figure 1-5 took 80 
minutes on a desktop PC equipped with a Titan Xp GPU. Limited computer 
resources will therefore be a weaker argument to exclude key physical processes in 
landslide-generated impulse wave simulations in the future, given that the computer 
power is exponentially growing (Moore’s law). 
In addition to the points shown in Table 1-1, the following advantage and disad-
vantages of this method should be noted: 

 
+ This method can predict subaerial landslide-generated impulse waves well 

by considering complex site-specific topographic and bathymetric condi-
tions. 

+ This method delivers the wave parameters at any desired location and ex-
cludes scale effects. 

− Calibration and validation of this method is key; for landslide-generated 
impulse waves this is usually based on hydraulic model tests. 
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− Some experience on the implementation of the problem and interpretation 
of the results is required to avoid inaccurate results or misinterpretations. 

 
(iv) Empirical equations derived from field data 

 
Ataie-Ashtiani and Malek Mohammadi (2007) and Oppikofer et al. (2016) have de-
rived equations from field data. In addition to the points shown in Table 1-1, the fol-
lowing advantage and disadvantages of this method need to be stated: 
 
+ This method involves no scale effects. 
− It is based on field data, which are mostly estimates rather than measure-

ments (for instance wave heights indirectly calculated using run-up heights). 
− The governing parameters are also only estimates (for example based on 

underwater deposits of slide material). 
− The equations of Ataie-Ashtiani and Malek Mohammadi (2007) allow only 

the wave amplitude to be calculated; there is no known work on the deter-
mination of other wave parameters. 

 

 
Figure 1-6 Field data: photomontage of the 1958 Lituya Bay case showing the boundaries of the slide 

area and the maximum wave run-up height of 524 m on the opposite shore of the bay (after 
Fritz 2002). 

 
The Lituya Bay case of 1958 shown in Figure 1-6 is a rare but fortunate event for 
researchers because knowing the run-up height on the opposite shore yields infor-
mation on an impulse wave close to the slide impact location. Only few additional 
reliable field data exist, including Chehalis Lake 2007 (Roberts et al. 2013) and 
Eqip Sermia Glacier 2014 (Lüthi and Vieli 2016). However, for none of these ex-
amples actual wave heights were measured during the event. Estimated wave 
heights are a result of backcalculation from observed run-up heights after the event. 
As a result, equations derived from field measurements feature a high degree of un-
certainty and are hardly valid for general practice. 
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(v) Analytical investigations 
 

Analytical equations were derived for example by Noda (1970) and Di Risio and 
Sammarco (2008). A comparison of these two methods with an impulse wave gen-
erated in a hydraulic model by a solid mass (Di Risio 2005) is shown in Figure 1-7. 
In addition to the points shown in Table 1-1, analytical investigations have the fol-
lowing advantage and disadvantages: 

 
+ This method involves no scale effects. 
− As the impact mechanism is too complex to be described analytically, pre-

dictions for the far field can only be based on simplified initial conditions. 
− The deduction of the results can be quite difficult. 
− Simplifications are necessary, e.g. using linear-wave theory, potential theo-

ry etc., which allows consideration of only relatively small and symmetrical 
waves. 

 

 
Figure 1-7 Comparison of the analytical computation of a landslide-generated impulse wave profile at a 

distance x = 5.30 m from the impact location with an experiment (Di Risio and Sammarco 
2008). 

 
As this method may provide predictions only for very idealised slides and then only 
in the far field, it is of limited use for practical application. 
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The first three methods, (i) to (iii), are of practical relevance for the assessment of land-
slide-generated impulse waves and their effects. Sometimes it may be better to use 
hybrid modelling, i.e. to combine model testing with numerical analysis. This may be 
done, for example, when the criteria for negligible scale effects in the hydraulic model 
allow only the investigation of the generation of the waves; the wave propagation will 
therefore be derived numerically, or if a part of the reservoir is studied using a hydraulic 
model and the results obtained are then used to calibrate a numerical model. Naturally, 
the time required and the cost increase by applying a hybrid. 
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2 Water wave theory 

2.1 Introduction 

In this chapter the most important properties of water waves are explained. Landslide-
generated impulse waves belong to the category of gravity waves, i.e. they are principal-
ly influenced by the gravitational force in contrast to capillary waves. 

The relevant wave parameters are shown in Figure 2-1 in the (x, z) plane, on a de-
fined sine wave whose profile describes a sine curve. If the sine wave is small 
(H/h < 0.03) and flat (H/L < 0.006) it is also referred to as a linear wave. The original 
water depth is defined as the still water depth h. The wave height H is measured from 
the trough, i.e. from the lowest point on the wave surface to the crest, the highest point. 
The wave amplitude is the height from the undisturbed water surface to the wave crest. 
For the sine wave shown in Figure 2-1, a = H/2. This no longer applies for impulse 
waves, which are generally non-linear and vary from the perfect sine wave (Figure 2-1). 
Furthermore the wave length L extends from wave node to node, crest to crest or trough 
to trough. The wave period T is the time it takes for the crests, nodes or troughs, respec-
tively, of two successive waves, to pass a fixed point. For the sine wave, the period can 
be calculated as T = L/c, in which c is the wave celerity. The square of the celerity for a 
linear sine wave is given by 







=

L
hgLc π2tanh

π2
2 . (2.1) 

c [m/s] = Wave celerity (Figure 2-1) 
g [m/s2] = Gravitational acceleration; g = 9.81 m/s2 
h [m] = Still water depth 
L [m] = Wave length (Figure 2-1) 
π [-] = Circular constant; π = 3.14 

Figure 2-1 Principal wave parameters presented on an idealised sine wave (in addition, the wave is 
linear if H/h < 0.03 and H/L < 0.006). 
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The following terms can be used to differentiate between various water wave types: 
 

a) Oscillatory or translatory waves 
b) Shallow, intermediate or deep-water waves 
c) Periodic or non-periodic waves 
d) Linear or non-linear waves 

 
a) Oscillatory or translatory waves 
 
In water waves, the individual particles of water do not move in the same way as the 
water surface or the wave celerity c. This may be seen in Figure 2-1, where the or-
bital motion of a water particle is shown for an oscillatory wave. Whilst the water 
surface seems to advance at the wave celerity, the water particle moves elliptically 
and, over the period considered, remains at the same position. Oscillatory waves do 
not therefore transport fluid mass, but only energy, which sets the surrounding water 
particles in motion. Translatory waves are the opposite, as the water particles move 
horizontally in the direction of wave propagation and there is transport of fluid mass 
as well as energy (Figure 2-5). 
 
b) Shallow, intermediate or deep-water waves 
 
The criterion for the definition of shallow, intermediate or deep-water waves is the 
ratio of wave length to still water depth L/h. Figure 2-2 shows, for an oscillatory 
wave, the water particle movement of these three wave types. Figure 2-2(a) shows a 
shallow-water wave, corresponding to L/h > 20, in which the water particles move 
in elliptical orbits. The orbits become flatter and smaller further down in the water 
column, until their movement close to the bed is eventually parallel to the bed. A 
tsunami, caused by tectonic plate movement, is normally a shallow-water wave. Be-
cause the ratio L/h for small, sinusoidal shallow-water waves is large, the wave ce-
lerity may be calculated using Eq. (2.1) reducing for large L/h to c = (gh)1/2. 

The opposite case is shown in Figure 2-2(c), a deep-water wave commensurate 
with L/h < 2. In this case the water particles move in circular orbits, which decrease 
further down in the water column until no more movement can be detected on the 
bed. In other words, deep-water waves are not affected by the lake or sea bed. Wind 
waves on open water are typically deep-water waves. Applying Eq. (2.1) for a small 
sinusoidal wave a wave celerity of c = [gL/(2π)]1/2 is obtained because the ratio L/h 
is small. Between deep and shallow-water waves is the zone of intermediate-water 
waves, for which 2 < L/h < 20 (Figure 2-2b). Such waves are partly influenced by 
the lake or sea bed and their wave celerity may be calculated, for linear waves, using 
the full expression in Eq. (2.1). 
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c) Periodic or non-periodic waves 
 
Periodic waves are formed by a group of several waves as shown, for example, in 
Figure 2-1. A non-periodic wave occurs as a single wave (Figure 2-5). 

 
d) Linear or non-linear waves 
 
The term non-linearity originates from the mathematical definition of waves. Linear 
waves have the form of a sine curve and their relative height H/h < 0.03; in addition, 
the wave steepness must be H/L < 0.006 (Dean and Dalrymple 2004; Figure 2-1). 
Hence, in the mathematical analysis, the terms H/h and H/L are only considered lin-
early, with higher order terms being neglected. In contrast, terms of higher order are 
considered in non-linear wave theories. The greater the degree of non-linearity, the 
more the wave profile deviates from the ideal sinusoidal profile, i.e. the ratios H/h 
and/or H/L increase and the linear wave condition for sinusoidal waves H = 2a no 
longer applies. Normally, the greater the degree of non-linearity, the more complex 
and time consuming is the mathematical description of the wave profile. 

 

 
Figure 2-2 Water particle movement of an oscillatory wave in (a) shallow (L/h > 20), (b) intermediate 

(2 < L/h < 20) and (c) deep water (L/h < 2). 

 
Water waves naturally exhibit a combination of the properties described in a) to d). 

Landslide-generated impulse waves are non-periodic waves and normally strongly non-
linear; as a result they are difficult to analyse mathematically. Furthermore, fluid mass 
transport by such waves may vary from little to considerable and the waves may show 
both translatory and oscillatory characteristics. Depending on the characteristics of the 
slide, shallow or deep-water waves may be formed, but mostly intermediate-water 
waves result. Further, landslide-generated impulse waves commonly consist of several 
superimposed waves of different lengths travelling at different wave celerity (Eq. 2.1). 
In other words, an impulse wave consisting of one big wave at the slide impact location 
typically separates into smaller individual waves far offshore. This process is known as 
frequency dispersion, with the affected waves being called dispersive. In rare cases, an 
impulse wave train consists of shorter followed by longer waves superimposing further 
offshore to larger impulse waves because the faster longer waves overtake the slower 
shorter ones. This mixture of wave characteristics of landslide-generated waves as well 
as frequency dispersion are reasons why their accurate prediction is challenging. 
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2.2 Theoretical wave types  

Water waves differ to a greater or lesser extent from the ideal sinusoidal profile shown 
in Figure 2-1, which may be described for small dimensions (H/h < 0.03 and 
H/L < 0.006) by the linear wave theory (Dean and Dalrymple 2004). Here a few special 
non-linear water waves are discussed (Section 2.1), which have been relatively well 
studied, both theoretically and experimentally. The four wave types presented below are 
relevant, as all landslide-generated impulse waves may be allocated to one of the fol-
lowing groups: a) Stokes wave, b) cnoidal wave, c) solitary wave and d) bore. 
 
a) Stokes wave 
 
Figure 2-3 shows the profile of a Stokes wave, which is a deep-water to intermediate-
water wave and may therefore be applied, for example, for wind generated waves. The 
Stokes wave is steeper than the sinusoidal wave in Figure 2-1, and the wave trough is 
somewhat flatter and longer than the wave peak. The water particles do not move in a 
closed orbital fashion and, in consequence, slight transport of fluid mass takes place.  
 

 
Figure 2-3 Stokes wave profile showing the most important wave parameters; slight fluid mass 

transport. 

 
b) Cnoidal wave 
 
Figure 2-4 shows a cnoidal wave, which is a periodic wave in intermediate or shallow-
water. Wind generated waves in shallow-water, for example, may be described with this 
theory. The cnoidal wave has mainly an oscillatory character, but also exhibits open 
water particle orbits and hence transport of fluid mass. Using the equation for cnoidal 
waves, both linear waves (sinus waves) and solitary waves are included as limiting 
cases. 
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Figure 2-4 Cnoidal wave profile showing the most important wave parameters; slight fluid mass 

transport. 

 
c) Solitary wave 
 
A solitary wave is shown in Figure 2-5. Classic tsunamis, which are caused by the 
movement of tectonic plates, have often been approximated with the solitary wave 
theory (Madsen et al. 2008 show that this is not always the best approximation). This is 
the non-linear water wave which has been most researched, both by numerical simula-
tions and laboratory experiments. It consists only of a wave peak but no trough. The 
wave amplitude is thus equal to the wave height a = H. In addition, the wave length L = 
∞ and the wave is classed as a shallow-water wave (L/h > 20). 
 

 
Figure 2-5 Solitary wave profile showing the most important wave parameters; major fluid mass 

transport. 

 
Movement of the water particles is horizontal and as a consequence there is large 

fluid mass transport. In a rectangular channel on a horizontal bed, the height of this type 
of wave in theory does not decrease and the wave may propagate over unlimited dis-
tances without any change of shape. In reality, turbulence, created mainly on the bed of 
the ocean or lake, results in some reduction of wave height, but this is still less than 
occurs with other wave types. If the reservoir geometry deviates from rectangular then a 
pure solitary wave is not observed and the leading wave crest is followed by a trough. 
The solitary wave theory can be developed from the cnoidal wave theory for the wave 
period T → ∞. The wave celerity of solitary waves is given by 
 

c = [ g ( h + a)]1/2. (2.2) 
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a [m] = Wave amplitude (Figure 2-1) 
c [m/s] = Wave celerity 
g [m/s2] = Gravitational acceleration; g = 9.81 m/s2 
h [m] = Still water depth 

 
If the wave amplitude a of a solitary wave above a horizontal bed exceeds 0.78h, the 

wave breaks and moves on as a bore. However, this process cannot realistically be 
described analytically. 
 
d) Bore 
 
Figure 2-6 shows a bore, which is created e.g. by a very violent slide impact in the slide 
impact zone or during wave breaking near the shore when air is entrained at the crest or 
when the top of the crest curls over. A bore is a shallow-water wave with horizontal 
particle movement which thus transports large fluid masses. Its profile is characterised 
by a steep front and a gently sloped back. 
 

 
Figure 2-6 Wave profile of a bore with the most important wave parameters; large fluid mass transport. 

 
The four wave types Stokes, cnoidal and solitary waves, as well as bore, described 

above, will sometimes be used in this manual for classifying impulse waves.  
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3 Computational procedure and Step 1 

3.1 Introduction 

Chapter 3 presents the procedure to determine the effects of landslide-generated impulse 
waves on dams, valid for slide masses originally located above the water surface (Figure 
1-1). Figure 3-1 summarises the computational procedure with the corresponding litera-
ture references and the section references to this manual. Some of the original methods
have been further developed or supplemented, or the corresponding equations were
adjusted. The approach involves two steps (Figure 3-1).

Step 1 applies generally applicable equations. With regard to the wave generation, a 
distinction between studies based on a prismatic wave channel (2D) and those in a 
rectangular wave basin (3D) is made (Figure 3-3). Both methods are justified in practice 
and cover the extreme cases of restricted lateral and completely free radial propagation 
of the impulse waves above a horizontal sea or reservoir bed (Figure 3-2). The 2D 
equations were developed by Heller (2007) and Heller and Hager (2010), based on 
Zweifel (2004) and Fritz (2002). For 3D conditions, the equations were developed by 
Evers (2017) and Evers et al. (2019). 

In contrast to those covering the wave generation, the generally applicable equations 
governing the effects of impulse waves on dams are based only on 2D models. In other 
words, 3D effects such as a curved dam shape are not taken into account. The run-up 
height on constantly inclined slopes is computed using the equation of Evers and Boes 
(2019), including the experiments by Müller (1995), as shown in Figure 3-1. Overland 
flow on horizontal foreshores is covered by the equations of Fuchs (2013) and Fuchs 
and Hager (2015). Wave overtopping at dams is considered for rigid dam structures 
including vertical walls (Kobel et al. 2017). For the computation of the wave force on 
dams two scenarios are relevant: wave force solely due to wave run-up and wave force 
due to wave run-up combined with overtopping. For the former scenario, the method by 
Ramsden (1996) is applied assuming that the upstream dam face is vertical (β = 90°) 
with full force effect but no overtopping. For the latter scenario, a corresponding force 
reduction method is applied. To analyse dams with sloping upstream faces (β < 90°), 
the forces must be decomposed into their horizontal and vertical components. To sim-
plify the procedures for this resolution, the total loading is assumed to be static as for 
the moment of the maximum run-up height, practically all kinetic energy is converted 
into potential wave energy. 

In Step 2, once the results of the generally applicable equations are available, the ef-
fects of deviations from the idealised reservoir geometry (prismatic, channel form ge-
ometry, rectangular basin shape; Section 4.2) are considered, as well as those of the 
mass movement type (granular slide; Section 4.4). These variations may lead to signifi-
cant differences in the results obtained. Moreover, edge waves (Section 4.3) and the 
run-out distance of underwater landslide deposits (Section 4.5) are discussed. Only the 
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generally applicable equations of Step 1 are taken into account in the computational 
tool; Step 2 in Figure 3-1 is also needed and must be carried out independently after the 
computational tool has been applied. 

 

Landslide-generated impulse waves

Phase Method

Wave generation and
propagation

Wave force on dams

2D: Heller and Hager (2010) 3D: Evers et al. (2019)

Qualitative estimate of the influences not considered in the 1st step
(effects of the reservoir shape, edge waves,

mass movement types, underwater slide deposits)

Distribution in horizontal and vertical force components if < 90°

Section

Values independent of 2D or 3D 3.2.4.1

3.2.4.2 3.2.4.3

4.2 - 4.5

3.5

Step 1
Step 2

Wave run-up,
dam overtopping
and overland flow Dam overtopping

Kobel et al. (2017)

Wave run-up: Evers and Boes (2019) 3.3.3

3.3.4

Reduction of force effect if wave overtops (R > f )

Wave force for

Overland flow
Fuchs and Hager (2015)

3.4

 
Figure 3-1 Computational procedure for landslide-generated impulse waves with the impulse wave 

phases, computation methods and references to the sections. 

 
Chapter 3 is set out to follow the procedure shown in Figure 3-1. Section 3.2 ad-

dresses the wave generation and propagation. The individual equations are presented, 
after an introduction and the definition and explanation of the relevant governing pa-
rameters. The slide velocity at the point of impact is the most important governing 
parameter and is discussed in more detail. Distinctions are made between equations that 
are valid for both 2D and 3D, equations for a channel-form reservoir geometry (2D) and 
those for a basin-form geometry (3D). This differentiation covers the extreme cases of 
restricted lateral (2D) and completely free radial (3D) wave propagation in reservoirs 
(Figure 3-2). The results from Section 3.2 serve as governing parameters for the compu-
tation of the effects of impulse waves on dams as well as on the shore (Sections 3.3 to 
3.5). Equations for the computation of wave run-up and wave overtopping are presented 
in Section 3.3. Section 3.4 addresses the relevant governing parameters for overland 
flow. The forces acting on the dam can then be computed by using the procedure out-
lined in Section 3.5. Assuming hydrostatic pressure in Subsection 3.5.2, methods for 
both wave run-up and overtopping are discussed in Subsection 3.5.3. 
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3.2 Wave generation and propagation 

3.2.1 Introduction 

The procedure is based on generally applicable equations. For wave generation, these 
were developed by laboratory tests either (a) in a prismatic wave channel (2D) or (b) in 
a rectangular wave basin (3D) (Section 3.1). The two extreme cases (a) and (b) are 
shown in Figure 3-2 and can be described as follows: 
 

• Extreme case (a): the slide mass impacts longitudinally into a long reservoir, the 
slide width being either the same as or greater than the reservoir width. The im-
pulse waves are confined as they move along the reservoir and are not able to 
propagate laterally (Figure 3-2a). 

 
• Extreme case (b): the slide mass impacts at any possible location into the reser-

voir, and the slide width is less than that of the reservoir. The reservoir geometry 
is such that impulse waves can propagate radially and completely free from the 
slide impact zone (Figure 3-2b). 

 

 
Figure 3-2  Reservoir geometries for two idealised cases described directly with generally applicable 

equations: extreme case (a) (2D) with longitudinal impacting slide and confined lateral wave 
propagation, extreme case (b) (3D) with the slide impacting across the reservoir and com-
pletely free radial wave propagation. 

 
The same governing parameters are relevant for the computation of the wave generation 
for both extreme cases (a) and (b) (Subsection 3.2.2). Because impulse waves (and thus 
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their energy) propagate over a larger area in extreme case (b), the wave height decreases 
more rapidly than in case (a), i.e. the attenuation rates differ for the two cases (Subsec-
tion 4.2.1). 

To extrapolate the results of model tests to prototypes, geometrical similarity must 
exist between them. Deviations of the geometry may result in model effects, for exam-
ple, the relative wave heights do not correspond between model and prototype. The 
more the actual shape of the reservoir deviates from the two idealised geometries 2D 
and 3D, the more dominant will be effects such as wave reflection, shoaling or con-
striction. In this case, the limiting values for extreme cases (a) and (b) may even be 
exceeded. As a result, greater insecurity in the determination of the wave parameters has 
to be expected for geometries significantly deviating from 2D and 3D. The procedures 
in Sections 4.2 and 4.3 then become important. Alternatively, more precise predictions 
may be possible with a prototype-specific model test or a numerical simulation (Section 
1.2). 

3.2.2 Governing parameters 

Figure 3-3 shows sketches defining the relevant parameters for the impulse wave gener-
ation in (a) channel-shape (2D) as well as for (b) basin-shape (3D) reservoirs. The fol-
lowing parameters have an effect on the computations of the key wave characteristics 
including wave heights and amplitudes in both 2D and 3D cases: 
 

• Slide impact velocity Vs 
• Bulk slide volume Vs 
• Slide thickness s 
• Slide width or reservoir width b 
• Bulk slide density ρs 
• Bulk slide porosity n 
• Slide impact angle α 
• Still water depth h 

 
The origin of the coordinate system (x, z) is the intersection of the still water level 

and the slide slope (Figure 3-3a). The governing slide parameters are related to the 
impact location and not to the original slide position. All seven slide parameters given 
above may vary between the original position of the slide and its impact location. The 
bulk slide volume Vs and the bulk slide density ρs comprise the bulk slide porosity n. 
This is neither introduced as an independent parameter in the computational procedure, 
nor is the slide mass ms = Vsρs. The bulk slide volume Vs and the bulk slide density ρs, 
which consider the bulk slide porosity n, must be distinguished from the slide grain 
volume Vg and grain density ρg. The equations for conversion between grain and bulk 
slide properties are given in Table 3-1. 
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Figure 3-3  Sketches defining the governing parameters on impulse wave generation, the most important 

wave parameters (for extreme case 2D) and the coordinate systems for (a) 2D and (b) 3D. 

 

Table 3-1 Conversion of grain to bulk slide parameters, and vice versa, using the bulk slide porosity n. 

 
 
The slide thickness s is the maximum thickness of the slide measured perpendicular-

ly to the slide slope at the moment of impact. The slide width b should be selected as the 
average width during impact. If the slide width is greater than that of the reservoir in the 
2D case, then the reservoir width should be taken for b. The slide impact angle α is the 
hill slope angle at the impact location, measured as the angle from the horizontal  
(Figure 3-3a). This defines the momentum transmission angle of the slide on the water 
body. The still water depth h is taken as the average depth in the slide impact zone, 
along the slide axis (γ = 0°; Figure 3-3). If an average depth may not be clearly deter-
mined, a sensitivity analysis covering a representative depth range is recommended 
(Section 4.6). 

Changes of a generated impulse wave when propagating in reservoirs of horizontal, 
channel-shape or basin-shape geometry are described by the parameters (Figure 3-3): 
 

• Distance x (2D) 
• Radial distance r (3D) 
• Wave propagation angle γ   (3D) 

 
In a channel-shape reservoir (2D; Figure 3-3a), the impulse wave changes only with 
regard to distance x. In a basin-shape reservoir (3D; Figure 3-3b), both the radial dis-
tance r and the wave propagation angle γ  are involved. 
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3.2.3 Slide velocity at the point of impact  

As one important governing parameter, the derivation of the slide velocity at the point 
of impact is discussed in this section. Note that the acceleration of the slide and the 
subsequent movement depends on the inclination of the slope along which the slide 
accelerates, whilst the generation of the impulse wave depends among other factors 
on the slide impact angle α.  For most of the derivations in this section, it is assumed 
that α is the same as the inclination angle of the slope and will be used interchangea-
ble. The final subsection gives some indications on how to account for slope changes 
along the traveling path of the slide. Examples 1, 2 and 4 in Chapter 5 provide details 
on the application of the equations presented in this section. 
 
Slides in soil material 

The slide impact velocity Vs is that of the centre of gravity of the slide mass during 
impact and can be expressed via the energy equation: 
 

21
2 s s s s scm V m a= ∆ . (3.1) 

 
Equation (3.1) can be solved for Vs at the point of entry: 
 

2 2
sin

sc
s s sc s

zV a a
α

∆
= ∆ = . (3.2) 

 

as [m/s2]    =   Slide acceleration  
ms [kg]    =   Slide mass   
Vs [m/s]   =   Slide impact velocity (Figure 3-4)  
α [°]    =   Slide impact angle (Figure 3-4)  
∆sc  [m]    =   Travel distance of the centre of gravity before entering the 

water body 
∆ zsc [m]   =  Drop height of centre of gravity of the slide (Figure 3-4)  

 
The acceleration of the landslide as is the result of unbalanced driving and resisting 
forces acting on the sliding mass. Without additional external stimulus this means for 
slides composed of granular, purely frictional material: 
 

sin cos tan sin cos tans s s s s sG G m a G Gα α δ α α δ′ ′> → = −  (3.3) 
 
and thus 
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sin cos tans s
s

s

G Ga
m

α α δ′−
=  with ( )sG f u′ = . (3.4) 

 

as [m/s2]    =   Slide acceleration  
Gs [N]    =   Total weight of the slide   

sG′  [N]    =   Effective slide weight in function of the pore pressure u 

ms [kg]    =   Slide mass   

u [kPa]    =   Pore water pressure 

α [°]    =   Slide impact angle (Figure 3-4)  
δ [°]   =   Dynamic bed friction angle (Figure 3-4)  

 

If there is no pore water pressure influencing the shear resistance (e.g. dry soil or rock 
slides), then Eqs. (3.2) and (3.4) can be combined and simplified (Körner 1976) to  

 

( )2 1 tan cots scV g z δ α= ∆ − . (3.5) 

 
g [m/s2]    =   Gravitational acceleration; g = 9.81 m/s2  
Vs [m/s]   =   Slide impact velocity (Figure 3-4)  
α [°]    =   Slide impact angle (Figure 3-4)  
δ [°]    =   Dynamic bed friction angle (Figure 3-4)  
∆ zsc [m]  =  Drop height of centre of gravity of the slide (Figure 3-4)  

 

In other cases, e.g. if the landslide contains water and thus the influence of pore water 
pressure has to be accounted for, Eq. (3.4) has to be solved to obtain the slide accelera-
tion. 
 

 
Figure 3-4  Sketches defining the parameters to determine the slide impact velocity Vs on slopes of 

constant slide impact angle α for (a) dry soil or rock slides and (b) the effect of external 
stimulus.  

 
The parameters in Eq. (3.5) are shown in Figure 3-4(a) for a slope of constant incli-

nation. The drop height of the centre of gravity of the slide ∆zsc is the vertical distance 
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between the centre of gravity of the slide mass in its original position and the still water 
level. The dynamic bed friction angle δ represents the friction at the contact between the 
slide mass and the underlying stable slope. The greater this friction, the greater is the 
value of δ which is typically in the range 15° ≤ δ ≤ 35°. The value for α is equal to the 
average slope angle in this example. 

For potentially undrained or partly undrained slide failure (i.e. at the interface be-
tween the sliding mass and the stable ground) soil softening due to development of 
excess pore pressures has to be accounted for. 

Using total stress analysis the acceleration of the slide may be computed as 
 

sins s u
s

s

G A sa
m
α −

= . (3.6) 

 
Alternatively, when the computation is based on effective stresses, the development of 
excess pore pressures has to be accounted for and Eq. (3.4) becomes 
 

sin cos tans s
s

s

G Ga
m

α α δ′−
=  with ( , )sG f u u′ = ∆ . (3.7) 

 
As [m2]  =   Area of the slip surface i.e. contact area between slide and 

stable ground   
Gs [N]    =   Total weight of the slide   

sG′  [N]    =   Effective weight of the slide as function of  
- the pore pressure u and  
- the excess pore pressure Δu 

ms [kg]    =   Slide mass   
su [kPa]   =   Undrained shear strength of the slip surface  

u [kPa]    =   Pore water pressure 

α [°]    =   Slide impact angle (Figure 3-4)  

Δu [kPa]    =   Excess pore pressure 
 

Additional  external stimulus  

An external stimulus due to seismic loading has also to be accounted for (Figure 3-4b). 
As a conservative first estimate the acceleration of the slide can be determined by intro-
ducing an external driving force Fext = ms aeq for the duration of an earthquake: 
 

sin cos tan cos sin tans s s eq s eq
s

s

G G m a m a
a

m
α α δ ω ω δ′− + +

= . (3.8) 
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aeq [m/s2]   = Earthquake induced acceleration  
as [m/s2]   =   Acceleration of the slide  
Gs [N]   =   Total weight of the slide   

sG′  [N]   =   Effective weight of the slide   

ms [kg]   =   Slide mass   

α [°]   =   Slide impact angle (Figure 3-4)  
δ [°]   =   Dynamic bed friction angle (Figure 3-4)  

ω [°] =  Angle between the direction of the earthquake induced 
acceleration and the slope 

 

Alternatively, more sophisticated methods, such as Newmark’s sliding block method 
(Newmark 1965) or dynamic finite element analyses, in combination with acceleration 
time histories, can be applied to compute the slide displacement and velocity. 
 
Other types of slides 

For other types of slides such as snow avalanches, flow avalanches or rock falls, ade-
quate models to derive the slide thickness s and slide impact velocity Vs have to be used. 
E.g. Salm et al. (1990) address the derication of the slide thickness s and the slide im-
pact velocity Vs for flow avalanches.  
 

Slides with slope inclination changes 

If at any point the gradient of the slope changes significantly, as shown in Figure 3-5, 
the slide velocity at this point VsNK may be computed with Eq. (3.5) by introducing 
values for the relevant parameters ∆ zscN, δ N and α N. Assuming that the dissipation of 
the kinetic energy due to the slope change is negligible, the increase of the slide ve-
locity to the slide impact velocity Vs is then determined from Eq. (3.6), with the value 
of VsNK computed as shown e.g. in the previous sections 
 

2 22 2
sin

sc
s sNK s sc sNK s

zV V a V a
α

∆
= + ∆ = + . (3.9) 

  

where 2 2
sin

scN
sNK sNK scN sNK

N

zV a a
α

∆
= ∆ = . (3.10) 

 
For dry granular material, Eq. (3.10) can directly be expressed as a function of the 
dynamic bed friction angles, slope inclinations and drop heights (Figure 3-5) 
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( ) ( )2 1 tan cot 1 tan cots scN N N scV g z zδ α δ α= ∆ − + ∆ −   . (3.11) 

  

as [m/s2] = Acceleration of the slide along the slope after the point of 
slope change (Figure 3-5) 

asNK [m/s2] = Acceleration of the slide along the slope before the point of 
slope change (Figure 3-5) 

g [m/s2]   =   Gravitational acceleration; g = 9.81 m/s2  
Vs [m/s]  =   Slide impact velocity (Figure 3-5)  
VsNK [m/s]  =   Slide velocity at point of slope change (Figure 3-5)  
α  [°]   =   Slide impact angle (Figure 3-5)  
δ  [°]   =   Dynamic bed friction angle (Figure 3-5)  

∆zsc [m]  =  Drop height of centre of gravity of the slide (Figure 3-5)  
  

 
Figure 3-5  Sketch defining the parameters to determine the slide impact velocity Vs for slopes with a 

slope change.  

 
For a number of slope changes, the analysis may proceed analogously. The slide ve-

locity at the uppermost slope change can be computed according to the previous section 
by introducing the values of ∆zscN, δN and αN, valid for the slope above the change. The 
obtained slide velocity VsNK is then introduced in Eq. (3.10), together with the relevant 
values for the next slope section. For each successive slope section, the same Eq. (3.10) 
can be applied, introducing the values for the slope in question and the slide velocity at 
the end of the previous section. Eq. (3.2) is therefore a special case of Eq. (3.10) with 
VsNK = 0. 

3.2.4 Reservoir shape 

3.2.4.1 Values independent of 2D or 3D 

The equations given below are valid for both extreme cases (a) and (b) of idealised 
reservoir geometries as described in Subsection 3.2.1. Intermediate geometries have to 
be considered in Step 2 of the computational procedure (Section 4.2.1).  

The impulse product parameter P by Heller (2007) and Heller and Hager (2010) has 
an important role in both 2D and 3D computations. It is defined as 
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[ ]{ } 2/14/12/1 )7/6(cos αMSFP = .  (3.12) 

 
b [m] = Slide width (Figure 3-3b) 
F [-]  = Slide Froude number; F = Vs /(gh)1/2 
g [m/s2] = Gravitational acceleration; g = 9.81 m/s2 
h [m] = Still water depth (in the slide impact zone) 
M [-] = Relative slide mass; M = ρsVs/( ρw bh2) 
P [-] = Impulse product parameter 
s [m] = Slide thickness (Figure 3-3a) 
S [-]  = Relative slide thickness; S = s/h 
Vs [m/s] = Slide impact velocity, e.g. from Eq. (3.1) or Eq. (3.2) 
  (Figure 3-3a) 
Vs [m3] = Bulk slide volume (Figure 3-3a) 
α  [°]  = Slide impact angle (Figure 3-3a) 
ρs [kg/m3] = Bulk slide density (Figure 3-3a) 
ρw [kg/m3] = Water density 

 
Apart from the water density ρw and the gravitational acceleration g, the value of P is 
determined only from governing parameters and can therefore be estimated prior to any 
slide event. The significance of the dimensionless values F, S, M and α, as applied in 
Eq. (3.12), is discussed by Heller (2007) and Heller and Hager (2010). 

In the equations given below, slide densities from compact snow to granite, slide 
impact angles from 30° to 90°, and distances from the coordinate origin of up to 59h for 
the 2D case and 16h for the 3D case, respectively, are taken into account, as these repre-
sent the experimental parameters ranges on which the equations are based. In practice, 
the limitations given in Tables 3-2 and 3-3 must be respected when using this proce-
dure. 

3.2.4.2 Extreme case (a) (2D) 

The equations presented here are based on Heller (2007) and Heller and Hager (2010) 
(Figure 3-1). They apply for the computation of impulse waves propagating longitudi-
nally in a laterally confined reservoir, following the impact of a slide mass in the 
streamwise direction (Figure 3-2a; extreme case (a) in Subsection 3.2.1). With regard to 
the effects of impulse waves on dams, above all the wave height H and the wave ampli-
tude a are of particular importance. In addition, the wave length L and the wave period 
T are taken into consideration which, according to the linear wave theory, are connected 
with the wave celerity c as L = Tc (Section 2.1). The maximum wave height HM in the 
slide impact zone is often formed by a wall of water rather than by a stable wave. For 
this reason, it will be distinguished between the maximum wave height HM in the slide 
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impact zone and the wave height H in the wave propagation zone. The former may be 
determined as 
 

hH M
5/4)9/5( P= . (3.13) 

 
h [m] = Still water depth (in the slide impact zone) 
HM [m] = Maximum wave height (Figure 3-3a) 
P [-] = Impulse product parameter from Eq. (3.12) 

 
The distance of the maximum wave height from the slide impact location xM is given by 
 

( ) hxM
2/12/11 P= . (3.14) 

 
h [m] = Still water depth (in the slide impact zone) 
P [-] = Impulse product parameter from Eq. (3.12) 
xM [m] = Streamwise distance of the maximum wave amplitude 
  from the impact location (Figure 3-3a) 

 
The wave period TM of the maximum wave height HM can be computed as 
 

2/12/1 )/(9 ghTM P= . (3.15) 
 

g [m/s2] = Gravitational acceleration; g = 9.81 m/s2 
h [m] = Still water depth (in the slide impact zone) 
HM [m] = Maximum wave height (Figure 3-3a) 
P [-] = Impulse product parameter from Eq. (3.12) 
TM [s] = Wave period of HM 

 
The value of the wave amplitude a is determined indirectly from the wave height H, by 
applying Eqs. (3.13) or (3.19). For a known wave height H, the wave amplitude a is 
 

Ha )5/4(= . (3.16) 
 
a [m]  =  Wave amplitude (Figure 3-3a) 
H [m]  =  Wave height from Eqs. (3.13) or (3.19) (Figure 3-3a) 

 
The wave trough is thus equal on average to only about 20% of the wave height H in 2D 
(Figure 3-3a). 

The wave celerity c is determined using the equation for the solitary wave celerity 
 

( )[ ] 2/1ahgc += . (3.17) 



3 Computational procedure and Step 1 

29 

a [m]  =  Wave amplitude (Figure 3-3a) 
c [m/s] =  Wave celerity 
g [m/s2]  =  Gravitational acceleration; g = 9.81 m/s2 
h [m]  =  Still water depth 

 
The value of c can be determined locally or between two points. In the latter case, the 
average values of a and h, between the two points, are introduced into Eq. (3.17). An 
impulse wave with an amplitude of a = 20 m in h = 100 m deep water will have a celeri-
ty c of about 34 m/s or 124 km/h. 

With TM from Eq. (3.15), and with the linear relation L = T c, the wave length LM of 
HM can be determined as 

 
cTL MM = . (3.18) 

 
c [m/s] = Solitary wave celerity from Eq. (3.17) 
HM [m] = Maximum wave height (Figure 3-3a) 
LM [m] = Wave length of HM  
TM [s] = Wave period of HM 

 
For the evaluation of wave run-up, the wave height at the dam or reservoir shore is 

required, and not only the maximum wave height HM in the slide impact zone. Further-
more, the streamwise coordinate x must be considered (Figure 3-3a). If the wave height 
H sought is located farther from the slide impact location than where the maximum 
wave height HM occurs (x/h = X > XM = xM /h), then the wave height H follows 

 

( )( ) hXxH 5/43/14/3)( −= P  for X > XM. (3.19) 
 

h [m] = Still water depth (in the slide impact zone) 
H [m] = Wave height (Figure 3-3a) 
P [-] = Impulse product parameter from Eq. (3.12) 
x [m] = Streamwise coordinate in the longitudinal channel 
  direction (Figure 3-3a) 
xM [m] = Streamwise distance of the maximum wave amplitude 
  from the impact location  
X [-] = Relative streamwise distance; X = x/h 
XM [-] = Relative streamwise distance of the maximum wave  
  amplitude from the impact location; XM = xM /h 

 
Equation (3.19) is only to be used when x > xM. The wave period T(x) is determined as 
(Heller et al. 2009) 

 
2/116/54/1 )/(9)( ghXxT P=  for X > XM. (3.20) 
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g [m/s2] = Gravitational acceleration; g = 9.81 m/s2 
h [m] = Still water depth (in the slide impact zone) 
P [-] = Impulse product parameter from Eq. (3.12) 
T [s] = Wave period (Figure 3-3a) 
x [m] = Streamwise coordinate in the longitudinal channel 
  direction (Figure 3-3a) 
xM [m] = Streamwise distance of the maximum wave amplitude  
  from the impact location  
X [-] = Relative streamwise distance; X = x/h 
XM [-] = Relative streamwise distance of the maximum wave 
  amplitude from the impact location; XM = xM /h 

 
Again, in accordance with the linear wave theory, the wave length L(x) is determined 
from 
 

)()()( xcxTxL = . (3.21) 
 

c [m/s] = Solitary wave celerity from Eq. (3.17) 
L [m] = Wave length (Figure 3-3a) 
T [s] = Wave period from Eq. (3.20) (Figure 3-3a) 
x [m] = Streamwise coordinate in longitudinal channel direction 
  (Figure 3-3a) 

 
Equations (3.12) to (3.21) were empirically derived from laboratory experiments. 
Therefore, the parameters must be kept within the limitations given in Table 3-2 for 
practical applications. 
 

Table 3-2 Limitations to compute the 2D impulse wave generation and propagation. 

Term Range Definition 

Slide Froude number  0.86 ≤ F ≤ 6.83 F = Vs/(gh)1/2 
Relative slide thickness 0.09 ≤ S ≤ 1.64 S = s/h 
Relative slide mass 0.11 ≤ M ≤ 10.02 M = ρsVs/(ρwbh2) 
Relative slide density 0.59 ≤ D ≤ 1.72 D = ρs/ρw 
Relative granulate density 0.96 ≤ ρg/ρw ≤ 2.75 ρg/ρw 
Relative slide volume 0.05 ≤ V ≤ 5.94 V = Vs/(bh2) 
Bulk slide porosity 30.7% ≤ n ≤ 43.3% n 
Slide impact angle 30° ≤ α ≤ 90° α 
Relative slide width 0.74 ≤ B ≤ 3.33 B = b/h 
Relative streamwise distance 2.7 ≤ X ≤ 59.2 X = x/h 
Impulse product parameter 0.17 ≤ P ≤ 8.13 P = FS1/2M1/4{cos[(6/7)α]}1/2 
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3.2.4.3 Extreme case (b) (3D)  

The equations for the 3D case are based on Evers (2017) and Evers et al. (2019) (Figure 
3-1). They can be used to analyse impulse waves propagating radially and completely 
freely in a reservoir (Figure 3-2b; extreme case (b) in Section 3.2.1). The governing 
slide parameters are identical to the 2D case shown in Figure 3-3(a). However, in con-
trast to the 2D case, wave parameters are predicted depending on their position in the 
impulse wave train (Figure 3-6a). 

 
Figure 3-6  Sketches defining the most important wave parameters (for extreme case 3D) and the 

coordinate system. 

 
The slide impact zone is delimited by the impact radius r0 (Figure 3-6). For r < r0, 

no distinct wave features may be predicted due to the highly turbulent slide-water inter-
actions related to the wave generation process. Depending on the slide characteristics, r0 
ranges between one and five times the still water depth. The elliptical extent of the slide 
impact zone r0 is determined based on the impact radii r0,0° and r0,90° for γ = 0° and 90°, 
respectively, with 
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b [m] = Slide width (Figure 3-6b) 
h [m] = Still water depth (in the slide impact zone) 
P [-] = Impulse product parameter from Eq. (3.12) 
r0 [m] = Impact radius (Figure 3-6) 
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r0,0° [m] = Impact radius for γ = 0° (Figure 3-6b) 
r0,90° [m] = Impact radius for γ = 90° (Figure 3-6b) 
αeff [°] = Effective slide impact angle; αeff = (6/7)α 
γ  [°] = Wave propagation angle (Figure 3-6b) 

 
Outside the slide impact zone (Figure 3-6), the wave characteristics are computed based 
on the surrogate radial wave propagation distance r* defined as  
 

0*r r r= −  for r ≥ r0. (3.25) 
 

r [m] = Radial distance from the impact location in the wave 
  basin (Figure 3-6b) 
r0 [m] = Impact radius (Figure 3-6b) 
r* [m] = Surrogate radial distance from the impact location in the  
  wave basin (Figure 3-6b) 

 
The initial amplitudes of the first wave crest a0,c1, first wave trough a0,t1 and second 

wave crest a0,c2 for r* = 0 and γ = 0° (Figure 3-6b) may be determined with 
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α  =     
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a0,c1 [m] = Initial first wave crest amplitude (Figure 3-6) 
a0,c2 [m] = Initial second wave crest amplitude (Figure 3-6) 
a0,t1 [m] = Initial first wave trough amplitude (Figure 3-6) 
b [m] = Slide width (Figure 3-6b) 
h [m] = Still water depth (in the slide impact zone) 
P [-] = Impulse product parameter from Eq. (3.12) 
αeff [°] = Effective slide impact angle; αeff = (6/7)α 

 
The initial height of the first wave is determined as the sum of the wave crest and trough 
amplitudes at the same location. 

The amplitudes at any point beyond the impact radius r0, i.e. r* ≥ 0 and −90° ≤  γ ≤ 
90°, of the first wave crest ac1, first wave trough at1, and second wave crest ac2 (Figure 
3-6b) may be determined with 

 



3 Computational procedure and Step 1 

33 

*0.3 cos exp 0.15
0, 1

1 0, 1
*( *, ) exp 0.4 sech 3.2

90

eff
r
h

c
c c

a ra r a
h h

α
γγ

 
− −  

      = −     °     
, (3.29) 

*0.3 cos exp 0.15
0, 1

1 0, 1
*( *, ) exp 0.4 sech 3.6

90

eff
r
h

t
t t

a ra r a
h h

α
γγ

 
− −  

      = −     °     
, (3.30) 

*0.3 cos exp 0.15
0, 2

2 0, 2
*( *, ) exp 0.1 sech 3

90

eff
r
h

c
c c

a ra r a
h h

α
γγ

 
− −  

      = −     °     
. (3.31) 

 
a0,c1 [m] = Initial first wave crest amplitude (Eq. 3.26) (Figure 3-6) 
a0,c2 [m] = Initial second wave crest amplitude (Eq. 3.27) (Figure 3-6) 
a0,t1 [m] = Initial first wave trough amplitude (Eq. 3.28) (Figure 3-6) 
ac1 [m] = First wave crest amplitude (Figure 3-6) 
ac2 [m] = Second wave crest amplitude (Figure 3-6) 
at1 [m] = First wave trough amplitude (Figure 3-6) 
h [m] = Still water depth (in the slide impact zone) 
r* [m] = Surrogate radial distance from the impact location in the  
  wave basin (Figure 3-6b) 
γ  [°] = Wave propagation angle (Figure 3-6b) 

 
Equations (3.29) to (3.31) include hyperbolic secant functions (sech) to describe the 
wave amplitude shape along γ. Similar to the initial wave amplitudes, wave heights are 
determined as the sum of wave crest and trough amplitudes at the same location.   

The celerities of the first and second wave crests cc1 and cc2 are given as a fraction 
of the solitary wave celerity c (Eq. 3.17) with     

 

1 1( *, ) 0.95 ( )c cc r g h aγ = + , (3.32) 

2 2( *, ) 0.7 ( )c cc r g h aγ = + . (3.33) 

 
ac1 [m] = First wave crest amplitude from Eq. (3.29) (Figure 3-6) 
ac2 [m] = Second wave crest amplitude from Eq. (3.31) (Figure 3-6) 
cc1 [m/s] = First wave crest celerity (Figure 3-6) 
cc2 [m/s] = Second wave crest celerity (Figure 3-6) 
g [m/s2] = Gravitational acceleration; g = 9.81 m/s2 
h [m] = Still water depth 

 
The period of the first wave T1 may be determined with 
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ac1 [m] = First wave crest amplitude from Eq. (3.29) (Figure 3-6) 
at1 [m] = First wave trough amplitude from Eq. (3.30) (Figure 3-6) 
g [m/s2] = Gravitational acceleration; g = 9.81 m/s2 
h [m] = Still water depth 
r* [m] = Surrogate radial distance from the impact location in  
  the wave basin (Figure 3-6) 
T1 [s] = First wave period (Figure 3-6) 

 
In analogy to the 2D case, the wavelength L1 of the first wave, again according to 

the linear wave theory, is given by 
 

1 1 1( *, ) ( *, ) ( *, )cL r T r c rγ γ γ= . (3.35) 
 
cc1 [m/s] = First wave crest celerity from Eq. (3.32) (Figure 3-6) 
L1 [m] = Wavelength of the first wave (Figure 3-6a) 
T1 [s] = First wave period from Eq. (3.34) (Figure 3-6a) 

 
Equations (3.12) and (3.22) to (3.35) were empirically derived from laboratory experi-
ments. Therefore, the parameters must be kept within the limitations given in Table 3-3. 
 

Table 3-3 Limitations to compute the 3D impulse wave generation and propagation. 

Term Range Definition 

Slide Froude number  0.40 ≤ F ≤ 3.40 F = Vs/(gh)1/2 
Relative slide thickness 0.15 ≤ S ≤ 0.60 S = s/h 
Relative slide mass 0.25 ≤ M ≤ 1.00 M = ρsVs/(ρwbh2) 
Relative slide density D = 1.338 D = ρs/ρw 
Relative granulate density ρg/ρw = 2.429 ρg/ρw 
Relative slide volume 0.187 ≤ V ≤ 0.750 V = Vs/(bh2) 
Slide impact angle 30° ≤ α ≤ 90° α 
Relative slide width 0.83 ≤ B ≤ 5.00 B = b/h 
Relative radial distance 1 ≤ r/h ≤ 16 r/h 
Wave propagation angle −90° ≤ γ ≤ 90° γ 
Impulse product parameter 0.13 ≤ P ≤ 2.08 P = FS1/2M1/4{cos[(6/7)α]}1/2 

 
The limitations for the computation of the 3D wave generation and propagation in 

Table 3-3 cover different parameter ranges than Table 3-2 for the 2D case; e.g. for 3D 
the impulse product parameter is within 0.13 ≤ P ≤ 2.08, while it is within 0.17 ≤ P ≤ 
8.13 for 2D. Furthermore, the experiments underlying the 3D equations were conducted 
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with a single granulate density (Table 3-3), representing rock material. However, the 
adoption of P allows for the consideration of different granular densities and Eqs. (3.22) 
to (3.35) may also be applied for a wider slide density range including snow or ice 
avalanches (0.59 ≤ D ≤ 1.72) for a preliminary hazard assessment. 

 

3.3 Wave run-up and dam overtopping 

3.3.1 Introduction 

In contrast to wave generation, the equations for wave run-up and dam overtopping can 
be based only on 2D investigations. 3D effects such as dam curvature or asymmetrical 
wave impact angles can generally not be taken into account. They must be estimated in 
the Step 2 in Section 4.2 after the initial computation based on generally applicable 
equations is completed. In this regard, for the 2D run-up formula, it is irrelevant wheth-
er the wave parameters have been determined using the equations given in Subsections 
3.2.4.2 or 3.2.4.3. 

3.3.2 Governing parameters 

Figure 3-7 shows a sketch defining the effects of impulse waves on dams, together with 
the relevant parameters. The following parameters have an influence in this procedure 
on the wave run-up or overtopping processes: 
 

• Wave amplitude a near the dam 
• Wave height H near the dam 
• Still water depth h near the dam 
• Run-up angle equal to dam face slope β  
• Freeboard f  
• Crest width bK  

 
The first two parameters a and H characterise the approaching impulse wave. They refer 
to the cross-section in front of the dam, where they are still not affected by the dam 
(Figure 3-7). These values are determined in Subsection 3.2.4. The still water depth h 
should be taken as that immediately upstream of the dam. The run-up angle β is meas-
ured from the horizontal (Figure 3-7). For the overtopping volume V per unit length 
dam crest, as shown in Figure 3-7, the freeboard f and the crest width bK are of rele-
vance. The roughness of the dam slope is neglected. Experiments by Teng et al. (2000) 
showed reduced run-up heights on rough slopes for mild slope angles α < 20°. There-
fore, predictions of wave run-up as well as dam overtopping with equations derived 
from laboratory experiments featuring smooth slopes are on the safe side. 
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Figure 3-7 Sketch defining the parameters for the wave run-up and dam overtopping. 

3.3.3 Wave run-up 

The following equation is taken from Evers and Boes (2019) (Figure 3-1). The run-up 
height R can be determined by 
 

( )
0.2

902 exp 0.4R a ε
β

 °
=  

 
. (3.36) 

 
a [m]  = Wave crest amplitude (in front of the dam) (Figure 3-7) 
h [m]  = Still water depth (in front of the dam) 
R [m] = Run-up height (Figure 3-7) 
β  [°] = Run-up angle equal to upstream dam face slope (Figure 3-7) 
ε [-]  = Relative wave crest amplitude; ε = a/h 

 
Equation (3.36) is limited to non-breaking impulse wave run-up. For β > 12° and ε < 
0.78, generally no wave breaking is expected during run-up. The value ε = 0.78 repre-
sents the maximum relative wave crest amplitude of a non-breaking solitary wave on a 
horizontal bottom. To predict whether an impulse wave is breaking or non-breaking 
during run-up for 10° ≤ β ≤ 12°, the slope parameter So by Grilli et al. (1997) may be 
applied, which is defined as 
 

tan1.521oS β
ε

= . (3.37) 

 
For So > 0.37, non-breaking wave run-up is expected (Grilli et al. 1997) and the applica-
tion of Eq. (3.36) is valid. Wave breaking would involve higher uncertainty. However, 
the application of Eq. (3.36) can be regarded to be on the safe side, as wave breaking 
induces energy dissipation. Additional limitations on the use of Eq. (3.36) are shown in 
Table 3-4. 
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Table 3-4 Limitations for the computation of the wave run-up. 

Term Range Term Range 

Relative wave crest amplitude  0.007 ≤ ε ≤ 0.69 Run-up angle 10° ≤ β ≤ 90° 
Non-linearity 0.57 ≤ a/H ≤ 1.04 Slope parameter So ≥ 0.37 

 

3.3.4 Wave overtopping at rigid dams 

If the run-up height exceeds the available freeboard, i.e. R > f, water overtops the dam 
crest. Unforeseen discharge on the dam’s airside may cause substantial damage to its 
structure and potentially lead to dam failure. Moreover, large overtopping volumes may 
create severe flooding downstream of the dam. The equations for the prediction of the 
overtopping process at rigid dams are taken from Kobel et al. (2017). The overtopping 
volume per unit length dam crest V is determined with 
 

V

0.70.121.5
2

0.25(2/ )( /90 )
1.35 w

K

aa h h
H w b

ε β

ε
°      =            

. (3.38) 

 
a [m]  = Wave crest amplitude (in front of the dam) (Figure 3-7) 
aw [m]  = Effective wave crest amplitude; aw = h + a – w = a – f 
bK [m]  = Dam crest width (Figure 3-7) 
f [m] = Freeboard 
h [m] = Still water depth (in front of the dam) 
H [m] = Wave height (in front of the dam) (Figure 3-7) 
V [m3/m] = Overtopping volume per unit dam crest length 
w [m] = Dam height (Figure 3-7) 
β  [°] = Run-up angle equal to upstream dam face slope (Figure 3-7) 
ε [-]  = Relative wave crest amplitude; ε = a/h 

 
Equation (3.38) includes the effective wave crest amplitude aw, which needs to be posi-
tive by definition. Therefore, the overtopping volume may only be estimated for wave 
crest amplitude larger than the freeboard, i.e. a > f. 

The maximum flow depth during wave overtopping on the water facing side of the 
dam crest (Figure 3-7) is relevant for estimating the required clearance above the dam 
crest (e.g. for bridges). The maximum wave overtopping flow depth d0 is determined 
with   
 

d0

0.160.214[( /90 ) ]
1.32

90
h w
w

β ε βε
−° −     =    °     

. (3.39) 
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a [m]  = Wave crest amplitude (in front of the dam) (Figure 3-7) 
d0 [m]  = Maximum wave overtopping flow depth (Figure 3-7) 
h [m] = Still water depth (in front of the dam) 
w [m] = Dam height (Figure 3-7) 
β  [°] = Run-up angle equal to upstream dam face slope (Figure 3-7) 
ε [-]  = Relative wave crest amplitude; ε = a/h 

 
In addition to V, the discharge per unit dam crest length is also important. The de-

termination of the discharge requires the wave overtopping duration given by   
  

1.9

0.2 0.5

0.4( 0.9/ )( /90 )1 ( / )
0.15O

ht w g
w

ε β

ε

−
− °   =     

. (3.40) 

 
a [m]  = Wave crest amplitude (in front of the dam) (Figure 3-7) 
g [m/s2] = Gravitational acceleration; g = 9.81 m/s2  
h [m] = Still water depth (in front of the dam) 
tO [s]  = Wave overtopping duration 
w [m] = Dam height (Figure 3-7) 
β  [°] = Run-up angle equal to upstream dam face slope (Figure 3-7) 
ε [-]  = Relative wave crest amplitude; ε = a/h 

 
The average discharge per unit dam crest length qm on the dam crest is then deter-

mined from 
 

qm = V /tO. (3.41) 
 

qm [m2/s] = Average unit discharge 
tO [s] = Wave overtopping duration (Eq. 3.40) 
V [m3/m] = Overtopping volume (Eq. 3.38) 

 
The maximum discharge q0M per unit dam crest length is also important. The data of 

Müller (1995) indicate the relation q0M ≈ 2q0m between the average and the maximum 
discharge if no freeboard is available, i.e. f = 0. This estimate may also be transferred to 
cases featuring a small freeboard compared to the still water depth, i.e. f ≪ h.  

Equations (3.38) to (3.40) were derived from experiments with solitary waves (a/H = 
1), characterised by a large horizontal mass transport (Section 2.2). Therefore, this wave 
type represents an extreme case. Equation (3.38) was generalised by Kobel et al. (2017) 
with the data by Müller (1995) to include also waves with a subsequent wave trough, 
i.e. a/H < 1. Limitations on the use of Eqs. (3.38) to (3.40) are shown in Table 3-5. 
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Table 3-5 Limitations to compute the wave overtopping at rigid dams. 

Term Range Term Range 

Relative wave crest amplitude  0.013 ≤ ε ≤ 0.700 Dam angle 18.4° ≤ β ≤ 90° 

Relative effective wave amplitude 0.02 ≤ aw/bK ≤ 130 Non-linearity 0.63 ≤ a/H ≤ 1.00 

Relative still water depth 0.67 ≤ h/w ≤ 1.00 Relative crest width 0.07 ≤ bK/w ≤ 0.53 

 

3.4 Overland flow 

3.4.1 Introduction 

If the topography after the run-up shore is horizontal, overland flow can be generated. 
While for plain wave run-up only the maximum run-up height is considered as the 
assessment parameter, the inundation depth and flow velocity are important for overland 
flow. Evacuation plans are primarily based on the flow front propagation, i.e. the dura-
tion of the flow front to reach a given location. The subsequent hazard assessment step 
is based on local flow depths and flow velocities to determine forces on infrastructure. 
The following overland flow equations are based on experiments with solitary waves by 
Fuchs (2013) and Fuchs and Hager (2015). The first incoming wave crest can be con-
sidered as a solitary wave, although the generated wave pattern may be more complex 
and additional wave-wave interaction between the reflected primary wave and the in-
coming secondary wave will be observed.  

3.4.2 Governing parameters 

Overland flow features strongly depend on (Figure 3-8): 
 

• Relative wave height ε = a/h 
• Run-up angle β 
• Freeboard f = w – h 

 
A larger relative wave height generally increases the resulting overland flow. For a mild 
run-up angle, the incoming wave is gradually transformed into overland flow such that a 
small flow depth and a high flow velocity are already observed at the transition point xtr. 
In contrast, for a steeper run-up angle the flow depth at the transition point is large and 
the corresponding flow velocity is small. If the freeboard f is large, the wave-shore 
interaction is similar to the plane wave run-up case. In contrast, for small values of f, a 
major portion of the incoming wave energy is transmitted to the connecting horizontal 
plane such that even small waves lead to overland flow. 
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Figure 3-8 Sketch defining the parameters for the overland flow. 

 
The minimum relative wave amplitude required to induce overland flow is 

 

( )0.05tan
3min

f
h
β

ε =  .  (3.42) 

 
a [m] = Wave amplitude (in front of the shore) (Figure 3-8) 
f [m] = Freeboard (Figure 3-8) 
h [m] = Still water depth (in front of the shore) (Figure 3-8) 
β [°] = Run-up angle (Figure 3-8) 
εmin [-] = Minimum relative wave amplitude to induce overland  
    flow 

 
By subtracting εmin from the incoming relative wave amplitude, the wave portion effec-
tively determining the overland flow characteristics (subscript eff) is 
 

eff minε ε ε= − .  (3.43) 

 
ε [-] = Relative wave amplitude; ε = a/h (Figure 3-8) 
εeff [-] = Effective relative wave amplitude 
εmin [-] = Minimum relative wave amplitude to induce overland 

flow (Eq. 3.42) 
 
The limitations for the overland flow computations are specified in Table 3-6. 
 

Table 3-6 Limitations to compute the overland flow. 
Term Range Term Range 

Relative wave amplitude 0.1 ≤ ε ≤ 0.7 Relative freeboard 0.04 ≤ f/h ≤ 0.56 
Run-up angle 11° ≤ β ≤ 34° Relative overland flow distance 0 ≤ xov/w ≤ 10 
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3.4.3 Overland flow front propagation 

If the relative freeboard f/h is large, then the incoming wave is first transformed into a 
shore slope-parallel run-up flow before the run-up tongue reaches the transition point 
where it transforms into a horizontal overland flow. Therefore, a part of the incoming 
wave energy is reflected or dissipated during the run-up process and does not contribute 
to the overland flow. For small f/h, however, the incoming wave is nearly fully transmit-
ted into the overland flow. The wave is then compressed at the shore and overland flow 
is subsequently accelerated by the transformation of potential to kinetic energy. The 
overland flow propagation is generally faster for gentle slopes since the overland flow 
characteristics are then already fully established at the transition point, in contrast to 
steeper slopes (β ≈ 34°). The flow front position xf is represented as a function of the 
relative time Tr = t(c/a) by 
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.  (3.44) 

 
a [m] = Wave amplitude (in front of the shore) (Figure 3-8) 
c [m/s]  = Wave celerity (Eq. 3.17) (Figure 3-8) 
f [m] = Freeboard (Figure 3-8) 
h [m] = Still water depth (in front of the shore) (Figure 3-8) 
Tr [-] = Relative time; Tr = t(c/a) 
w [m] = Shore height (Figure 3-8) 
xf [m] = Flow front position (Figure 3-8) 
β [°] = Run-up angle (Figure 3-8) 
ε [-] = Relative wave height; ε = a/h (Figure 3-8) 

 

3.4.4 Overland flow depth 

First, the maximum flow depth at the transition point d0 = dmax(xov = 0) is determined 
based on the incident parameters. For a small relative freeboard of f/h = 0.04, the maxi-
mum flow depth can be larger than the incident wave amplitude. As described above, a 
steep run-up angle of β = 34° leads to a more abrupt wave reflection and thus to larger 
flow depths at xtr, as compared with a mild angle of β = 11°. This slope effect is promi-
nent for large incident wave amplitudes, whereas the differences remain small for small 
a. The effect of the shore slope also increases with increasing freeboard. The maximum 
flow depth d0 at xtr is found with  
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( )
( )0 0.45cot
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d0 [m] = Maximum flow depth at xtr (Figure 3-8) 
h [m] = Still water depth (in front of the shore) (Figure 3-8) 
w [m] = Shore height (Figure 3-8) 
β [°] = Run-up angle (Figure 3-8) 
εeff [-] = Effective relative wave height (Eq. 3.43) 

 
In a second step, the maximum flow depths on the overland flow portion dmax(xov) 

are evaluated based on d0. The maximum flow depth along the shore rapidly reduces 
within a short propagation distance. For example, at a relative overland flow position 

*
maxx = 5, only ≈ 23% of the initial flow depth d0 remains. The maximum flow depth dmax 

at a given *
maxx  is 

 

( ){ }0.39*
0 1 tanh 0.54max maxd d x = −   

  (3.46) 

 

with 
 

5.3tan 1.4
* ov
max

x wx
w h

β −
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d0 [m] = Maximum flow depth at xtr (Eq. 3.45) (Figure 3-8) 
dmax [m] = Maximum flow depth at xov 
h [m] = Still water depth (in front of the shore) (Figure 3-8) 
w [m] = Shore height (Figure 3-8) 

*
maxx  [-] = Relative overland flow position  

xov [m] = Streamwise overland flow coordinate (Figure 3-8) 
xtr [-] = Transition point (Figure 3-8) 
β [°] = Run-up angle (Figure 3-8) 

 

3.4.5 Overland flow velocity 

Overland flow velocities are generally larger for larger incoming waves. For a large 
relative freeboard (f/h = 0.56) the flow velocities considerably reduce, as compared with 
the flow on a shore of smaller freeboard. The flow then has to adapt to two consecutive 
changes of flow directions before reaching the horizontal portion at xov > 0. A part of the 
incoming wave energy is dissipated or reflected and does not contribute to the overland 
flow. In addition, flow velocities are strongly affected by the shore slope. For a steep 
slope with β = 34°, the flow characteristics at xtr are determined by the incoming wave 
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particle motion in contrast to the well-established overland flow features generated on 
gentler slopes with β = 11° to 22°. The maximum depth-averaged horizontal flow veloc-
ity at xtr is represented by a hyperbolic tangent function (tanh) as 
 

( )
0.53tan 2.5

0.5
, 5 tanh 0.017 cotx max eff

wv c
h

β

ε β
+  =   

   
 . (3.48) 

 
c [m/s]  = Wave celerity (Eq. 3.17) (Figure 3-8) 
h [m] = Still water depth (in front of the shore) (Figure 3-8) 

,x maxv  [m/s] = Maximum depth-averaged horizontal flow velocity at xtr 

w [m] = Shore height (Figure 3-8) 
xtr [-] = Transition point (Figure 3-8) 
β [°] = Run-up angle (Figure 3-8) 
εeff [-] = Effective relative wave height (Eq. 3.43) 

 
For larger distances xov, the overland flow is fully established with the maximum flow 
velocities located at the flow front. Similar to the maximum flow velocities at xtr, flow 
front velocities vf are larger for a larger incoming wave height. The shore slope effect is 
mainly concentrated at the transition point xtr. While the flow is strongly accelerated for 
the steep slope β = 34°, the front velocity remains almost constant during propagation 
for β = 11°. For larger xov the shore slope has only a minor effect on vf with generally 
larger flow velocities for mild slopes. 

Values of the front velocity at xov/w = 5 were observed to represent the maximum 
front velocity during overland flow propagation. For xov/w = 1 to 5, the potential energy 
converted to kinetic energy may accelerate the flow, at least for a steep shore slope. For 
xov/w = 5 to 9, the energy dissipation due to turbulence and viscous effects dominates, 
leading to reduced flow front velocities. Therefore, the values vf,max = vf(xov/w = 5) are 
considered as the maximum onshore flow velocities for all parameter configurations. 
The maximum flow front velocity is 
 

0.75

, 1.6 tanh 2.2f max eff
hv c
w

ε
  =   

   
.  (3.49) 

 
c [m/s]  = Wave celerity (Eq. 3.17) (Figure 3-8) 
h [m] = Still water depth (in front of the shore) (Figure 3-8) 

,f maxv  [m/s] = Maximum flow front velocity at xov/w = 5 

w [m] = Shore height (Figure 3-8) 
xov [m] = Streamwise overland flow coordinate (Figure 3-8) 
εeff [-] = Effective relative wave amplitude (Eq. 3.43) 
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The maximum ’far field’ flow front velocity is almost independent of the shore 
slope. Maximum values of the front velocity are vf ≈ 1.6c for large relative wave ampli-
tudes ε and a small relative freeboard f/h corresponding to a small relative shore height 
w/h = f/h + 1. The maximum front velocity is therefore about 1/3 higher than the maxi-
mum particle velocities at the transition point xtr (Eq. 3.48). 

The wave-induced overland flow discharge per unit width at xtr corresponds to the 
horizontal particle velocity vx integrated over the flow depth d as 
 

0

d
z d
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q v z
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=

= ∫ .  (3.50) 

 
The observed discharge characteristics are similar to unsteady flow, supporting the 
analogy to dam break or surge flow with a larger flow velocity and correspondingly 
smaller flow depth at the ascending stage, as compared to the descending stage. The 
maximum discharge at the transition point q0 = qmax(xov = 0) increases with larger ε and 
smaller f/h without a distinct shore slope effect. The maximum specific discharge is 
represented by the hyperbolic tangent function  
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a [m] = Wave amplitude (Figure 3-8) 
c [m/s]  = Wave celerity (Eq. 3.17) (Figure 3-8) 
h [m] = Still water depth (in front of the shore) (Figure 3-8) 
q0 [m2/s] = Maximum specific discharge at xtr 
w [m] = Shore height (Figure 3-8) 
xtr [-] = Transition point (Figure 3-8) 
β [°] = Run-up angle (Figure 3-8) 
εeff [-] = Effective relative wave amplitude (Eq. 3.43) 

 
For large wave heights and small freeboards, the unit discharge in Eq. (3.51) approaches 
83% of the maximum mass flux within the solitary wave xv (h + a) = ca. 
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3.5 Wave force on dams 

3.5.1 Introduction 

This section covers the impulse wave force acting on dams. The prediction of this force 
is subject to great uncertainty; even if the forces of identical waves are measured in 
model tests, there can be considerable scatter of the results. Walkden (1999) generated 
330 identical waves but found that their maximum force on bank protection varied by 
up to +100% and −50% from the mean value. The variation may be smaller for forces 
acting on a flat surface, e.g. the face of a dam. Marzeddu et al. (2017) repeated experi-
ments with nearly breaking waves impacting a vertical wall 120 times and found the 
maximum measured total force at 168% of the minimum force and at 133% of the mode 
value, i.e. the most frequent value. The following computations are based on an estima-
tion of the run-up height R such that the computation of R with Eq. (3.36) is not neces-
sary. However, they do require the wave amplitude a given in Subsection 3.2.4. 

Subsection 3.5.2 considers the effects resulting from the still water pressure. Im-
pulse waves can have different profiles and hence properties (Heller and Hager 2011). 
Among these wave types, the solitary-like waves represent the extreme case, as these 
are characterised by a large horizontal mass transport and a high wave celerity (Section 
2.2). To make a conservative estimate of the force acting on a dam, this wave type is 
therefore considered as the upper limiting case for all wave types in the following. In 
Subsection 3.5.3, the total horizontal force due to wave run-up as well as wave overtop-
ping are determined based on Ramsden (1996). Assuming a dam is designed to with-
stand hydrostatic pressure of the maximum reservoir level h plus the freeboard f, e.g. for 
wave and wind surges, the case of impulse wave run-up without overtopping (f ≥ R) is 
not expected to exert any critical force on the structure. Nonetheless, the computation of 
the wave force without overtopping is a prequisite for assessing the resulting overtop-
ping wave force. Analogous to an overfall weir, the wave force due to overtopping is 
subsequently determined. When considering the force on dams, it must be noted that 
this is the maximum wave force which often acts in the prototype for only a few sec-
onds. 

3.5.2 Hydrostatic pressure 

Figure 3-9(a) shows a reservoir with a still water depth h impounded by a dam with 
vertical upstream face. The resulting hydrostatic pressure distribution is shown in Figure 
3-9(b). The maximum water pressure ρwgh acts on the foundation, the horizontal force 
component FRW,h acts h/3 above the foundation level (e.g. Schröder and Saenger 2002). 

The horizontal force component FRW,h per unit length dam crest resulting only from 
the hydrostatic pressure, can be computed as 
 

2
, / 2RW h wF ghρ= . (3.52) 
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g [m/s2] = Gravitational acceleration; g = 9.81 m/s2 
h [m] = Still water depth (in front of the dam) 
FRW,h [N/m] = Horizontal force component per unit dam crest length 
  resulting only from hydrostatic pressure 
ρw [kg/m3] = Water density 

 

 
Figure 3-9  Effect of impounded volume on a dam with vertical upstream face: (a) still water surface for 

still water depth h and (b) hydrostatic pressure distribution with horizontal force component 
FRW,h per unit dam crest length and elevation h/3 of the resultant of FRW,h. 

 
If the upstream dam face is inclined at angle β, the water load results in a vertical 

force component, in addition to the horizontal force component (Figure 3-10). This 
vertical force component is of importance, e.g. for the determination of the safety of a 
dam against sliding in a total stress analysis. The horizontal still water pressure is not 
affected by the dam face slope β and can be computed for β < 90° using Eq. (3.52). The 
vertical force component FRW,v per unit dam crest length is given, according to Figure 
3-10, by 
 

2
, ,/ (2 tan ) / tanRW v w RW hF gh Fρ β β= = . (3.53) 

 

FRW,h [N/m] = Horizontal force component per unit dam crest length 
  resulting only from hydrostatic pressure 
FRW,v [N/m] = Vertical force component per unit dam crest length  
  resulting only from hydrostatic pressure 
g [m/s2] = Gravitational acceleration; g = 9.81 m/s2 
h [m] = Still water depth (in front of the dam) 
β  [°] = Dam face slope (Figure 3-10) 
ρw [kg/m3] = Water density 



3 Computational procedure and Step 1 

47 

 
Figure 3-10  Pressure distribution for a still water depth h impounded by an inclined dam face: on the left 

the horizontal force component, in the centre the vertical force component and on the right 
the total force is illustrated (after Schröder and Saenger 2002). 

3.5.3 Wave run-up and overtopping 

As shown in Figure 3-11(a), the pressure distribution of a solitary-like wave is approxi-
mately triangular. For the assessment of the force effect, the run-up height R is consid-
ered to be independent of the values computed in Eq. (3.36), and is assumed equal to 2a. 
Equation (3.54) for the determination of the total horizontal force component Ftot,h per 
unit dam crest length resulting from an impulse wave and hydrostatic pressure is based 
on the measured values of Ramsden (1996). The component Ftot,h is a function of the 
relative wave amplitude a/h (Heller et al. 2009) and may be approximated by 

 

[ ] 1/6
, ,1 1.5( / )tot h hs hF a h F= −                              for 0 ≤ a/h ≤ 0.6. (3.54) 

 
a [m] = Wave amplitude (in front of the dam) (Figure 3-7) 
Fhs,h [N/m] = Horizontal component of hydrostatic force per unit dam 
  crest length resulting from a still water level displaced 
  upwards by 2a, according to Ramsden (1996) 
Ftot,h [N/m] = Total horizontal force component per unit dam crest 
  length resulting from an impulse wave and hydrostatic 
  pressure 
h [m] = Still water depth (in front of the dam) 

 
The wave amplitude a can be determined for the 2D case from the wave height H as 

a = (4/5)H (Eq. 3.16). For the 3D case, a may be computed directly with Eqs. (3.29) and 
(3.31). In Eq. (3.55), the horizontal component of the hydrostatic force Fhs,h resulting 
from a still water level displaced upwards by 2a, is applied. Ramsden (1996) made use 
of this parameter Fhs,h to calibrate the measurement points. It is given by 
 

2
, (2 ) / 2hs h wF g a hρ= + . (3.55) 
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a [m] = Wave amplitude (in front of the dam) (Figure 3-7) 
Fhs,h [N/m] = Horizontal component of hydrostatic force per unit dam 

  crest length resulting from a still water level displaced 
upwards by 2a, according to Ramsden (1996) 

g [m/s2] = Gravitational acceleration; g = 9.81 m/s2 
h [m] =  Still water depth (in front of the dam) 
ρw [kg/m3] = Water density 

 

 
Figure 3-11 Pressure distribution on the vertical dam face as a result of a solitary-like wave with a 

maximum value of 2Ftot,h /(2a + h) for the cases of (a) f ≥ 2a and (b) reduced pressure effects 
if f < 2a. 

 
The elevation zK,tot,h of the resultant of Ftot,h is located (2a + h)/3 above the dam founda-
tion (Figure 3-11a). 

Should the wave overtop the dam crest, i.e. if the freeboard is less than twice the 
wave amplitude f < 2a, the force effect is reduced as shown in Figure 3-11(b). The 
pressure at the dam crest pK is determined in proportion as 
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2
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p a f

a h
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+
 for f < 2a. (3.56) 

 
a [m] = Wave amplitude (in front of the dam) (Figure 3-7) 
f [m] = Freeboard (Figure 3-7) 
Ftot,h [N/m] = Total horizontal force component per unit dam crest 
    length resulting from an impulse wave and hydrostatic 
    pressure (Eq. 3.54) 
h [m] = Still water depth (in front of the dam) 
pK [N/m2] = Pressure at dam crest (Figure 3-11b) 
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With Eq. (3.54), the reduced total horizontal force component per unit dam crest length 
Ftot,h,red resulting from an impulse wave and hydrostatic pressure for f < 2a may be 
generally formulated as 
 

,
, ,

2( )
2 2
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tot h red K

Fh fF p
a h

 +
= + + 

  for f < 2a. (3.57) 

 

a [m] = Wave amplitude (in front of the dam) (Figure 3-7) 
f [m] = Freeboard (Figure 3-7) 
Ftot,h  [N/m] = Total horizontal force component per unit dam crest 
    length resulting from an impulse wave and hydrostatic 
    pressure (Eq. 3.54) 
Ftot,h,red [N/m] = Reduced total horizontal force component per unit dam 
    crest length resulting from an impulse wave and   
    hydrostatic pressure (Eq. 3.57) 
h [m] = Still water depth (in front of the dam) 
pK [N/m2] = Pressure at dam crest (Figure 3-11b) 

 
The elevation zK,tot,h, red of the resultant of the reduced total horizontal force compo-

nent Ftot,h,red is shown in Figure 3-11(b) and may be expressed as 
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. (3.58) 

 
a [m] = Wave amplitude (in front of the dam) (Figure 3-7) 
f [m] = Freeboard (Figure 3-7) 
Ftot,h [N/m] = Total horizontal force component per unit dam crest 
  length resulting from an impulse wave and hydrostatic 
  pressure (Eq. 3.54) 
F tot,h,red [N/m] = Reduced total horizontal force component per unit dam 
  crest length resulting from an impulse wave and hydro- 
  static pressure (Eq. 3.57) 
h [m] = Still water depth (in front of the dam) 
pK [N/m2] = Pressure at dam crest (Figure 3-11b) 
zK ,tot,h,red [m] = Elevation of the resultant of Ftot,h,red 

 
The effect of the hydrostatic pressure in accordance with Eq. (3.52) is already taken 

into account in the computational procedure in Subsection 3.5.3. The horizontal force 
effect remains independent of the dam face slope β. For β < 90°, an additional vertical 
force component exists (Figure 3-10), equal to the force determined in Eq. (3.54) or Eq. 
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(3.57), respectively, divided by tanβ (Subsection 3.5.2). For the sake of simplification, 
the total force effect is thereby considered to approximate static conditions. According 
to Heller and Hager (2011), in extreme cases featuring large wave amplitudes and small 
water depths, bore-like waves can also develop in 2D, for    

 
1/3 5/2cos 11effS M α −> F . (3.59) 

 
b [m] = Slide width 
F [-]  = Slide Froude number; F = Vs /(gh)1/2 
g [m/s2] = Gravitational acceleration; g = 9.81 m/s2 
h [m] = Still water depth (in the slide impact zone) 
M [-] = Relative slide mass; M = ρsVs/( ρw bh2) 
s [m] = Slide thickness (Figure 3-3a) 
S [-]  = Relative slide thickness; S = s/h 
Vs [m/s] = Slide impact velocity (Figure 3-3a) 
Vs [m3] = Bulk slide volume (Figure 3-3a) 
α [°]  = Slide impact angle (Figure 3-3a) 
αeff [°] = Effective slide impact angle; αeff = (6/7)α 
ρs [kg/m3] = Bulk slide density (Figure 3-3a) 
ρw [kg/m3] =    Water density 

 
If bore-like waves are created close to the slide impact zone, they transform over a short 
distance into cnoidal or solitary-like waves, particularly in 3D (Section 2.2). Initially 
bore-like waves may therefore also be analysed by this method, if the slide impact 
location is not too close to the dam structure. 
 

3.6 Final comments 

The computational procedure presented in accordance with Figure 3-1 is based on gen-
erally applicable equations established from model tests in a prismatic wave channel or 
in a rectangular wave basin. Deviations from these ideal shapes may lead to model 
effects (Subsection 3.2.1). It is absolutely essential to estimate the effects which are 
neglected in the generally applicable equations, such as the reservoir geometry and the 
mass movement type. In the computational procedure shown in Figure 3-1, this is ex-
plained in Step 2. These effects are described in Chapter 4. They also have to be consid-
ered when applying the computational tool (Section 5.5). 
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4 Step 2, sensitivity analysis and safety allowance 

4.1 Introduction 

Sections 4.2 to 4.5 cover Step 2 of the computational procedure shown in Figure 3-1 for 
the analysis of landslide-generated impulse waves. The influences explained here may 
lead to significant changes in the wave parameters and thus the run-up heights, as com-
pared with these determined in Step 1. Step 2 should also account for the effects of ex-
ceeding the limitations for the computation of impulse waves, in accordance with Tables 
3-2 to 3-6. Large deviations from the values calculated in Step 1, as a result of breaching
the limitations in question, are generally not expected, but they do increase the level of
uncertainty of the results.

In addition to the momentum transmission, there will be a displacement mechanism 
if the slide volume is large in relation to the stored water volume in the reservoir. An 
approximation of the resulting increase of the reservoir level can be made by dividing the 
slide volume by the surface area of the reservoir (e.g. Subsection 5.1.3). 

The equations in Chapter 3 are based on a prismatic channel (2D), or a rectangular 
wave basin (3D), in each case with a horizontal bed. The influence, which a reservoir 
shape varying from these ideal forms has on the wave parameters, is discussed in Section 
4.2. In addition, an approach for approximating wave heights and amplitudes in geome-
tries neither clearly 2D or 3D based on the water body side angle θ is provided. Section 
4.3 addresses edge waves, which are impulse waves propagating along the same slope as 
the landslide moves in the 3D water body. The underlying physics of these edge waves is 
somehow different from the offshore propagating waves covered in Step 1. The equations 
in Chapter 3 are based on movement of a granular slide, but mass movement can also 
comprise of a solid body. The various mass movement types are discussed in Section 4.4. 
Then the difference between the maximum wave amplitude generated by a solid body, 
compared with that created by granular slide, is addressed. Section 4.5 accounts for the 
run-out distance of underwater landslide deposits, as these might interfere with sub-
merged reservoir infrastructure including e.g. bottom outlets. In Section 4.6, a sensitivity 
analysis of the run-up height R, as a function of the governing parameters, is described. 
Finally, some comments are made in Section 4.7 on the accuracy of the results and on 
safety allowances. 

4.2 Effects of the reservoir shape 

This Section considers the effects of the reservoir geometry for situations where the ge-
ometry deviates from the two extreme cases of (a) confined uni-directional (2D) and (b) 
completely free, radial (3D) propagation of the generated waves (Figure 3-2). These ef-
fects are presented here in order that their influence on wave height, and thus on the run-
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up height, can be assessed in Step 2 (Figure 3-1). The shape of the reservoir has a signif-
icant effect on the propagation of impulse waves (Camfield 1980, Heller and Spinneken 
2015, Ruffini et al. 2019), particularly for large water bodies. As the still water depth h 
decreases, a deep-water wave (L/h < 2) at first changes to an intermediate-water wave 
(2 < L/h < 20) before becoming a shallow-water wave (L/h > 20), i.e. the wave is then 
influenced by the bed. The contact with the bed normally results in an increase of the 
wave height, as the friction losses of the bed may be neglected compared with shoaling. 
A shallow-water wave will be influenced not only by shoaling but also by refraction. 
Irrespective of whether it is classed as a shallow, intermediate or deep-water wave, any 
wave will be subject to diffraction, constriction and reflection (Coastal Engineering Man-
ual USACE 2006). These effects are described as follows: 
 

a) Refraction (Figure 4-1a): a shallow-water wave changes direction such that it 
moves mostly perpendicularly onto the shore. 

 

 
Figure 4-1 (a) Principles of refraction near a shore and diffraction around a peninsula and (b) wave height 

increase resulting from constrictions near the flanks of an arch dam. 

 
b) Shoaling (Figure 4-2b): the height of a shallow-water wave increases whilst, at 

the same time, the wave length decreases. The increase in wave height due to 
shoaling may be determined according to Dean and Dalrymple (2004) as 

 
1/4 1/2

2 1 1

1 2 2

H h b
H h b

   
=    

   
. (4.1) 

 

b1 [m] = Reservoir width at cross-section 1 of Figure 4-2(b) 
b2 [m] = Reservoir width at cross-section 2 of Figure 4-2(b) 
h1 [m] = Still water depth at cross-section 1 of Figure 4-2(b) 
h2 [m] = Still water depth at cross-section 2 of Figure 4-2(b) 
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H1 [m] = Wave height at cross-section 1 of Figure 4-2(b) 
H2 [m] = Wave height at cross-section 2 of Figure 4-2(b) 

 
Equation (4.1) is based on the assumption of a constant energy flux between cross-
sections 1 and 2, as shown in Figure 4-2(b). If the widths between cross-sections 
1 and 2 are constant, b1 = b2, then Eq. (4.1) can be reduced to H2/H1 = (h1/h2)1/4, 
known as Green’s law. For situations where the width is not constant between two 
cross-sections, the water body geometry affects wave propagation, which is dis-
cussed in Section 4.2.1 in more detail. 
 

c) Diffraction (Figure 4-1a): a wave passes around an obstacle and gives up some of 
its energy laterally into the area of the obstacle shadow. 
 

d) Constriction (Figure 4-1b): a wave in a constricted area of a reservoir will increase 
in height, due to the concentration of wave energy. This can occur, for instance, 
at the flank of a dam. For shallow-water waves, the estimation is again possible 
using Eq. (4.1) and for deep-water waves Eq. (4.1) can be simplified to 
H2/H1 = (b1/b2)1/2 because h2 ≈ h1. The effects of constrictions at dam flanks will 
be quantified in Section 4.2.2. 

 
e) Reflection (Figure 4-2a): on reaching the shore, a wave is reflected and moves 

back with reduced height. The height of the reflected wave depends on how much 
of the wave energy is dissipated during run-up. The energy dissipation during run-
up at dams with vertical faces, where wave overtopping cannot take place, is al-
most negligible resulting in total reflection. The height and amplitude of the re-
flected wave are then practically the same as for the incident wave a ≈ aR. When 
a reflected wave meets an incident wave, non-linear superposition occurs at the 
meeting point, provided neither of the waves has broken. The individual waves 
move amongst each other and their profiles, after the waves have crossed, are 
practically uninfluenced by their encounter (Figure 4-3). 

 

 
Figure 4-2  Principle sketches from (a) reflection of a solitary wave by the face of a dam with a > aR and 

(b) shoaling of a solitary wave close to the shore with a1 < a2 and L1 > L2. 
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Figure 4-3  Collision of two waves in the VAW channel: (a) two similar solitary waves approach each 

other, (b) they meet and form a non-linear water oscillation and (c) after they have crossed 
their profiles have changed only insignificantly as a result of the collision (Heller 2007). 

4.2.1 Water body geometries between 2D and 3D 

Step 1 in Chapter 3 covers the idealised 2D and 3D water body geometries only. Heller 
et al. (2009) highlighted the need to investigate the behaviour of landslide-generated im-
pulse waves in intermediate geometries between 2D and 3D. This has been addressed in 
the meantime along with a quantification of how the impulse wave characteristics in 3D 
relate to the ones observed in 2D (Heller et al. 2012, 2016, Heller and Spinneken 2015, 
Ruffini et al. 2019). This section starts with an illustration of the relevance of the effect 
of the water body geometry, followed by a method to quantify impulse waves in interme-
diate geometries based on Eqs. (3.13) and (3.16) for 2D. 

In the slide impact zone, the wave height in 3D is only 20% smaller than in 2D, for 
the violent block slide event (large F, S and M and thus P) investigated by Heller et al. 
(2012). This extreme slide event supports the finding of Huber and Hager (1997) that the 
waves in the impact zone in 3D and 2D deviate little from each other. However, less 
violent events (small F, S and M and thus P) investigated by Heller and Spinneken (2015) 
showed that the wave magnitudes in the slide impact zone in 3D can already be a factor 
of 2.7 smaller than in 2D. This new research confirms that the basic assumption of iden-
tical wave heights at x/h = r/h = 5 used in Heller et al. (2009) is very imprecise for some 
impulse waves, hence, the parts of the method in the manual affected by this assumption 
have been replaced in this 2nd edition (Chapter 3). Independently of whether the waves 
are similarly large or not in the slide impact zone, they decay differently in the far field 
(Eq. (3.19) versus Eq. (3.29)). Heller et al. (2012) found a difference in 3D relative to 2D 
wave heights of nearly a factor of 4 at x/h = r/h = 12.5 on the slide axis, whilst the differ-
ence between 3D and 2D wave heights are typically an order of magnitude in the far field 
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at x/h = r/h = 35 (Heller and Spinneken 2015). Some guidance is thus required for wave 
heights and amplitudes in geometries between 2D and 3D. 

Ruffini et al. (2019) introduced a method to quantify the wave parameters in interme-
diate geometries in the far field based on the 2D near field wave parameters. The method 
is developed for idealised geometries as shown in Figure 4-4 where the reservoir geome-
try is essentially a function of the water body side angles θ (Figure 4-4). The 6 investi-
gated geometries involve the 2D (θ = 0) and 3D (θ = 90°) cases as well as 4 intermediate 
geometries with θ = 7.5°, 15°, 30° and 45° on both slide sides (symmetrical cases). Ge-
ometries with θ ˃  45° were not investigated because the maximum wave parameters along 
the slide axis for such geometries are essentially identical to the ones observed in 3D 
(Heller et al. 2012). The water body beds were horizontal for all investigated cases. 
 

 
Figure 4-4  Sketch defining the governing parameters of wave propagation in water body geometries with 

water body side angles between θ = 0° (2D) and 90° (3D); symmetrical case for θ1 = θ2 and 
asymmetrical case for θ1 ≠ θ2. 

 
Ruffini et al. (2019) investigated wave propagation with the numerical model 

SWASH. Four theoretical wave types were introduced in the geometries, namely (i) ap-
proximate linear waves, (ii) 5th order Stokes waves, (iii) 5th order cnoidal waves and (iv) 
1st order solitary waves. The following concentrates on the wave types Stokes, cnoidal 
and solitary only (Chapter 2) as impulse waves are non-linear. Figure 4-5 shows Stokes 
waves in 6 geometries at different distances r’/h = 3.0, 7.5, 15 and 35 from the wave 
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generation zone. Note that the generation zone is located at the boundary between the 
near and far fields such that the coordinate system shown in Figure 3-3 is shifted 
downwave and specified with an apostrophe (x’, r’, etc.). The offset between x and x’ can 
be computed with Eq. (3.14). The waves in 2D in Figure 4-5 stay reasonably constant 
over all distances, but they decrease in size with increasing θ; at a distance r’/h = 3.0 the 
difference between the wave heights in 2D and 3D features already a factor of 2.8 and 
this difference increases further to a factor of 8.4 at r’/h = 35.  
 

 
Figure 4-5  Relative water surface elevation η/h versus time normalised with the wave period t’/T for 5th 

order Stokes waves at different relative distances r’/h (Ruffini et al. 2019). 

 
The wave heights H extracted from Figure 4-5 are plotted in Figure 4-6 in dimension-

less form H/h over the relative wave front length lw/h. The wave front length lw (Figure 
4-4) is given by 

 
( ), 2w radl r' b r'θ θ= + . (4.2) 

 

b [m] = Slide width in 2D 
lw [m] = Wave front length 
θrad [rad] = Water body side angle in radians (Figure 4-4) 

 
The data of all geometries along the slide axis collapse on a parabola given by Eq. (4.1) 
if the width b2 is replaced by the wave front length lw at the corresponding position. The 
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maximum wave height along the slide axis in any geometry can therefore be derived 
based on Eq. (4.1) by considering Eq. (4.2). The wave amplitude a can be derived analo-
gously by replacing H with a in Eq. (4.1) (Ruffini et al. 2019). 

All wave heights at any position (along and off the slide axis) for all 6 geometries are 
plotted in Figure 4-6(b). The wave height is included in the expression H/h/(b’/lw)1/2 on 
the y-axis which is plotted over the wave propagation angle γ’. The semi-theoretical black 
curve in Figure 4-6(b) involves again Eq. (4.1) and is identical for all investigated wave 
types by Ruffini et al. (2019). This semi-theoretical curve is given by Eq. (4.3), and the 
corresponding expression for a is given in Eq. (4.4), as 

 

( )
2

1/2
( , ) / ( 0, 0 , 0 ) cos

3/ ( , )w

H r' ', h H r' ' = ° '
hb' l r'

γ θ γ θ γβ
θ
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 (4.4) 

 

a(r’, γ', θ) [m] = Wave amplitude (Figure 3-3) in any geometry 
a(r’ = 0, γ’ = 0°, θ = 0°) [m] = Wave amplitude (Figure 3-3) in 2D 
b’ [m] = Source width at the coupling location in 2D 
h [m] = Still water depth 
H(r’, γ’, θ) [m] = Wave height (Figure 3-3) in any geometry 
H(r’ = 0, γ’ = 0°, θ = 0°) [m] = Wave height (Figure 3-3) in 2D 
lw [m] = Wave front length 
r’ [m] = Radial distance from the coupling location 
β [-] = Pre-factor in Eqs. (4.3) and (4.4) (Table 4-1) 
γ’ [°] = Wave propagation angle from the coupling location  

(Figure 3-3b) 
θ [°] = Water body side angle (Figure 4-4) 

 
The pre-factors β in Eqs. (4.3) and (4.4) are available from Table 4-1 and differ for each 
wave type.  
 
Table 4-1 Pre-factor β in Eqs. (4.3) and (4.4) for different wave types observed in 2D classified with the 

wave type product T = S1/3Mcos(6/7α). 

Wave type Stokes waves cnoidal waves solitary wave 
Classification based on T and 
F for granular slides in 2D 

T < 4/5F−7/5 4/5F−7/5 ≤ T ≤ 11F−5/2 4/5F−7/5 ≤ T ≤ 11F−5/2 

β for Eq. (4.3) 1.10  
(+13%, −14%) 

1.03  
(+23%, −12%) 

1.20  
(+36%, −21%) 

β for Eq. (4.4) 1.01  
(+17%, −14%) 

0.85  
(+26%, −39%) 

0.84  
(+36%, −38%) 
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Figure 4-6  Wave height prediction of 5th order Stokes waves: (a) relative wave height H/h decay along 

the slide axis with lw/h and (b) lateral wave height decay compared with Eq. (4.3) (after Ruffini 
et al. 2019). 

 
The wave parameters in reservoir geometries deviating from the idealised 2D and 3D 
cases can be evaluated based on the following steps (Ruffini et al. 2019): 
 

1. Define the landslide parameters b, s, Vs, α, ms, ρs, ρw and h 
2. Evaluate the wave type in 2D using the wave type product T = S1/3Mcos(6/7α) 
3. Calculate the maximum wave height HM for 2D and its position from the slide 

impact r = dM 
4. Define θ1 and θ2 (Figure 4-4) at the slide sides to approximate the current geome-

try with an idealised one up to r’ = 0 and calculate the wave front length lw(r’ = 
0, θ) 

5. Compute H(r’ = 0, γ’ = 0°, θ) by applying energy conservation H(r’ = 0, γ’ = 0°, 
θ) = HM(r’ = 0, γ’ = 0°, θ = 0°)(b/lw(r’ = 0, θ))1/2 

6. Define θ3 and θ4 (Figure 4-3) at the slide sides to approximate the geometry up 
to a desired distance r’ > 0, thereby taking any restrictions or expansions of the 
water body into account, and calculate lw (r’, θ) 

7. Use Eqs. (4.3) and (4.4) to calculate H(r’, γ ’, θ) and a(r’, γ ’, θ) at the desired lo-
cation 

This approach is illustrated in Chapter 5 with the 2014 Lake Askja case where a subaerial 
landslide-generated impulse wave reached a maximum run-up height of 71 m. 

The introduced method from Ruffini et al. (2019) is based on idealised waves which 
essentially exclude frequency dispersion. While this method results only in slightly larger 
wave predictions for waves in or close to the shallow-water regime (cnoidal- and solitary-
like waves), it may over-predict the wave parameters for waves closer to the deep-water 
regime. E.g. at a relative distance x/h = 12.88 in 2D the wave amplitude in the laboratory 
(including frequency dispersion) is 30% smaller than based on the method of Ruffini et 
al. (2019) (excluding frequency dispersion). The discrepancy between waves affected by 
frequency dispersion and the idealised waves is likely to increase with increasing relative 
distance. This means that the method of Ruffini et al. (2019) is likely to overpredict the 
wave magnitude and operates on the safe side. 
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Heller et al. (2012) investigated a slide mass impacting at the corner of a reservoir, 
similarly as a potential scenario for the Küthai reservoir investigated by Fuchs et al. 
(2011). The behaviour of the impulse waves in this geometry is somehow distinct, but 
reasonably close to the values observed for a geometry with θ = 15° for the slide event 
investigated by Heller et al. (2012). In other words, the values for the wave parameters 
for a slide impacting in the corner of a reservoir are much closer to the values in 3D than 
in 2D. This is in line with the findings of Fuchs et al. (2011) where the potential Küthai 
reservoir case was investigated with a prototype-specific model at scale 1:130 and the 
wave height values predicted with the 2D method of Heller et al. (2009) significantly 
overpredicted the actually measured values in the physical model.  

4.2.2 Constriction at dam flanks 

Müller (1995) measured the run-up height on dam faces taking account of a lateral reser-
voir flank. The angle between the dam and the valley slope acts as a constriction (Figure 
4-7a). Even if a deep-water wave approaches the shore it will, as the still water depth 
decreases, transform into a shallow-water wave and be influenced by the bed due to shoal-
ing. Figure 4-7(b) shows, for a lateral shore inclination of 3:4, the relation of the run-up 
height to the run-up height at the dam centre R/Rm, as a function of the relative width of 
the reservoir flank l/lF. The wave run-up heights in the vicinity of the inclined shore are 
about 20-30% greater than at the centre of the dam. The run-up height based on Green’s 
law according to Eq. (4.1) is also shown. However, it overpredicts the wave height at the 
dam flank. Müller (1995) gives two possible explanations: (i) the wave in the model does 
not approach the lateral reservoir flank directly, and (ii) the friction losses at the bed re-
duce the run-up height in the model compared with its theoretical value as deduced from 
Green’s law. 
 
 

 
Figure 4-7  Run-up height as a consequence of an inclined lateral reservoir flank and constriction: (a) 

definition sketch showing the lateral flank of the reservoir and (b) relationship of the run-up 
height to the run-up height at the dam centre R/Rm as a function of the relative width of the 
reservoir flank l/lF [%] as well as the values calculated from Green’s law (─) according to Eq. 
(4.1) (after Müller 1995). 
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4.2.3 Ice cover 

The effects of ice cover on impulse waves were investigated by Müller (1995). Ice up 
to 0.5 m thick has a negligible effect on wave attenuation, irrespective of whether the 
cover is broken or compact. A prerequisite for this is that the slide mass pierces through 
the ice layer. If a snow avalanche does not succeed in penetrating the ice layer two dangers 
may nevertheless arise on the shore; the additional weight may cause the ice cover to tip 
into an inclined position and thus create a small impulse wave, or water which is displaced 
under the ice cover may, for instance, flow up from under the ice on the shore. 
 

4.3 Edge waves 

Excluded from Step 1 in Chapter 3 are edge waves, also known as lateral onshore wave 
run-up or trapped waves. Edge waves propagate along the same slope as the landslide 
moves in the 3D water body as shown in Figure 4-8. There are situations where the 
maximum edge wave run-up height ReM exceeds the waves predicted in Step 1 in 3D and 
the physics of edge waves is different from the offshore waves covered in Step 1 such 
that some findings about edge waves are summarised hereafter. 

 

 
Figure 4-8  Landslide-tsunami propagation in 3D from a 45° slope with offshore propagating waves, edge 

waves and the uprush in the wake of the already submerged landslide (after Heller and 
Spinneken 2015). 

 
Edge waves on sloping straight coasts were investigated by Ursell (1952), Lynett and 

Liu (2005), Di Risio et al. (2009a), Heller and Spinneken (2015) and McFall and Fritz 
(2017), amongst others. Edge waves were also quantified at conical islands by Di Risio 
(2009b) and McFall and Fritz (2017); these results are applicable to round volcanic is-
lands or the front of strongly curved slopes such as peninsulas (Figure 4-1a). Mainly find-
ings of Heller and Spinneken (2015) and McFall and Fritz (2017) are included hereafter. 
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These authors correlated the edge wave features by considering the water depth h and 
thus essentially use the same dimensionless parameters as introduced in Section 3, allow-
ing for a coherent consideration of edge waves in this manual. Further, the focus is on the 
maximum edge wave run-up height ReM and its decay with distance r as the most relevant 
parameter regarding hazard assessment. The reader is referred to Heller and Spinneken 
(2015) and McFall and Fritz (2017) for further results such as the maximum edge wave 
run-down and the wave length.  
 

 
Figure 4-9  Definition sketch of edge wave propagation on a planar slope with top and side view.  

 
Heller and Spinneken (2015) conducted 18 experiments in a wave basin with block 

slides. They found that the relative primary offshore wave amplitude ac1/h(r/h, γ = 0°) is 
roughly a factor of three larger than the primary edge wave run-up height Re1/h(r/h, 
γ = 90°). However, the primary offshore wave amplitude closer to the basin boundary is 
smaller with ac1/h(r/h, γ = 73°) ≈ 0.82Re1/h(r/h, γ = 90°) (Figures 4-8 and 4-9). This illus-
trates that the run-up Re1 is larger than the corresponding offshore wave amplitude at 
γ = 73°, such that the edge wave may exceed the run-up height caused by the offshore 
waves for situations where the landslide slope connects directly to the dam flank or to the 
shore of interest. The maximum edge wave run-up height ReM, irrespectively if observed 
at the primary or at a later wave within the wave train, is given by  

 

0.15[1 exp( 1.5 )]eMR M
h

= − − F   (4.5) 

 
b [m] = Slide width (Figure 3-3b) 
F [-] = Slide Froude number; F = Vs /(gh)1/2 
g [m/s2] = Gravitational acceleration; g = 9.81 m/s2 
h [m] = Still water depth (in the slide impact zone) 
M [-] = Relative slide mass; M = ρsVs/(ρw bh2) 
ReM [m] = Maximum edge wave run-up height 
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Vs [m/s] = Slide impact velocity  
Vs [m3] = Bulk slide volume (Figure 3-3a) 
ρs [kg/m3] = Bulk slide density (Figure 3-3a) 
ρw [kg/m3] = Water density 

 

Table 4-2 Limitations to calculate the maximum edge wave run-up with Eq. (4.5). 

Term Range Definition 

Slide Froude number  0.54 ≤ F ≤ 2.47 F = Vs/(gh)1/2 
Relative slide thickness 0.25 ≤ S ≤ 0.50 S = s/h 
Relative slide mass 0.25 ≤ M ≤ 2.49 M = ρsVs/(ρwbh2) 
Slide impact angle α = 45° α 
Relative streamwise distance 3.0 ≤ r/h ≤ 22.5 r/h 

 
The parameter limitations for Eq. (4.5) are given in Table 4-2. ReM was never observed 

at the first wave in the wave train; in 14 out of the 18 experiments it was measured at the 
second wave, in 3 at the third and in 1 experiment even at the fourth wave within the wave 
train. The travel of the wave maximum backwards in the wave train is typical for disper-
sive waves and in agreement with the findings of Di Risio et al. (2009a,b). Eq. (4.5) ap-
plies only to the region outside the slide path and shows that the run-up height ReM reaches 
a limit of 0.15h. Water may run-up much higher in the slide path which is less relevant, 
however, as this region is already affected by the landslide. This run-up is a consequence 
of the impact crater and strictly speaking no edge wave (Figure 4-8). A similar limit for 
ReM was found by Di Risio et al. (2009b) for edge waves propagating around a conical 
(volcanic) island. McFall and Fritz (2017) present an alternative to Eq. (4.5) for the max-
imum edge waves which predicts up to ReM/h ≈ 0.25 for their experimental conditions. In 
most studies ReM was observed some distance away from the slide impact location, e.g. 
Di Risio et al. (2009a) observed it at r ≈ 2b, Heller and Spinneken (2015) measured ReM 
within r/h ≤ 10 and McFall and Fritz (2017) at r ≈ 1.23b. 

Correlations for edge wave decays with distance r/h are provided by Heller and 
Spinneken (2015) and McFall and Fritz (2017). Heller and Spinneken (2015) found an 
expression for the decay of the primary edge wave in function of (r/h)−0.67. This decay 
lays between the primary wave decay (x/h)−0.30 observed in 2D and (r/h)−1.0 in 3D for the 
offshore waves under the same experimental conditions. This indicates once more that 
the edge waves may be larger at some distance from the slide impact zone than 3D waves 
due to a slower decay.  

McFall and Fritz (2017) derived an edge wave decay expression for the largest wave, 
irrespectively where it is observed in the wave train. They conducted landslide-tsunami 
experiments in a wave basin with granular material accelerated by pneumatic pistons prior 
to impact. They presented the following expression based on the parameter limitations in 
Table 4-3 
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1.15 0.5 0.12 0.35 0.08 0.300.2( ) 0.2 ( / )eM B VR r S V r h
h

−−= FF  (4.6) 

 
b [m] = Slide width (Figure 3-3b) 
B [-] = Relative slide width; B = b/h 
F [-] = Slide Froude number; F = Vs /(gh)1/2 
g [m/s2] = Gravitational acceleration; g = 9.81 m/s2 
h [m] = Still water depth (in the slide impact zone) 
r [m] = Radial distance from the impact location in the wave 
  basin (Figure 3-3b) 
ReM [m] = Maximum edge wave run-up height 
s [m] = Slide thickness (Figure 3-3a) 
S [-]  = Relative slide thickness; S = s/h 
Vs [m/s] = Slide impact velocity  
V [-] = Relative slide volume; V = Vs/h3 
Vs [m3] = Bulk slide volume (Figure 3-3a) 

 
Note that the relative slide volume V in Eq. (4.6) is differently defined than elsewhere in 
this manual. For typical values of F = 2.0, B = 4.0 and V = 10, Eq. (4.6) results in a decay 
of (r/h)−0.14, which is much slower than (r/h)−0.67 found by Heller and Spinneken (2015) 
for the primary wave. This may again be explained by frequency dispersion. McFall and 
Fritz (2017) expanded Eq. (4.6) to conical islands with hill slope coefficients reducing to 
1 in the case of planar slopes covered by Eq. (4.6). 
  

Table 4-3 Limitations to calculate the maximum edge wave decay with Eq. (4.6). 

Term Range Definition 

Slide Froude number  1.05 ≤ F ≤ 3.85 F = Vs/(gh)1/2 
Relative slide thickness 0.08 ≤ S ≤ 0.46 S = s/h 
Relative slide volume 0.2 ≤ V ≤ 28 V = Vs/h3 
Relative slide width 1.0 ≤ B ≤ 7.0 B = b/h 
Slide impact angle α = 27.1° α 
Relative streamwise distance 0 ≤ r/h ≤ 28 r/h 

 
The edge wave celerity is slightly slower than for offshore waves and can be 

approximated with the 0th mode of the dispersion relation given by Ursell (1952). This is 
not further detailed here as the estimation of the celerity based on Eqs. (3.17), (3.32), and 
(3.33) for the offshore propagating waves is faster and thus on the safe side and the travel 
distances of impulse waves in lakes and reservoir is often short (it typically takes the 
waves in the region of minutes to reach the critical infrastructure). Nevertheless, it is 
recommended to take edge waves into account in landslide-generated impulse wave 
hazard assessments. This is particularly important if a slide impacts in proximity of a dam 
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where the landslide slope connects directly (in a straight line) with the dam flank or the 
shore in question and where critical infrastructure is located at the slide impact shore. 

4.4 Mass movement types 

The equations in Chapter 3 are based on granular or mesh-packed granular material. In 
natural conditions, however, there exists a range of mass movement types and slide com-
positions. Much research has been conducted to investigate these effects on impulse 
waves by Heller and Kinnear (2010), Heller and Spinneken (2013), Bolin et al. (2014), 
Evers and Hager (2015), Lindstrøm (2016), Heller et al. (2018) and Tang et al. (2018) 
since the first release of the manual over 10 years ago to complement the then available 
findings of Zweifel (2004) and Ataie-Ashtiani and Nik-Khah (2008). If the mass moves 
as one block, then the wave height H is normally larger than that for granular material. 
How much depends essentially on the grain diameter and the slide impact velocity. At 
low velocity water can enter the pore volume of a granular slide whilst this is less well 
possible at a larger velocity as well as for a block of porosity n ≈ 0 as it displaces all the 
water (Lindstrøm 2016). Furthermore, the shape of a granular slide is changing during 
impact compared to blocks where it remains constant (Zweifel 2004; Heller and 
Spinneken 2013). 

Classifications help to judge whether a mass moves as a granular slide rather than as 
a solid body. In this section, the mass movement types and their processes are discussed, 
as described by Cruden and Varnes (1996), for rock, debris or earth. This information 
also helps the understanding of the processes for snow and ice avalanches as well as for 
glacier calving. An alternative classification was, for example, developed by Nemcok et 
al. (1972). 

A mass movement may be roughly defined by two nouns; the material in question 
followed by the movement type, for example landslide or rockfall. Cruden and Varnes 
(1996) identified five mass movement types (Figure 4-10): 
 

• Sliding (Figure 4-10a): the slide mass can move rotating (Figure 4-10a) along a 
curved concave slide plane or by translation on a plane. Slides can move as solid 
bodies or as granular material; in the latter case the bulk slide volume Vs increases 
during the travel to the impact zone (Subsection 3.2.3). 

 
• Flowing (Figure 4-10b): the mass behaves similar as a viscous liquid. 

 
• Falling (Figure 4-10c): a fall may be considered to be mostly a free-fall, if the 

hill slope angle α > 76°; if this angle is smaller the mass falls onto the slope 
where it typically breaks. 

 
• Toppling (Figure 4-10d): the mass moves around a rotation point or axis located 

below its centre of gravity. 
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• Spreading (Figure 4-10e): the mass volume spreads and breaks into finer 
material. This movement type occurs when the slope angle is small 0.3° ≤ α ≤ 5° 
and is most often triggered by an earthquake. This form of movement is rarely 
significant, in particular in Alpine regions, for the generation of impulse waves. 

 
 

 
Figure 4-10  Mass movement types: (a) sliding, (b) flowing, (c) falling, (d) toppling and (e) spreading 

(Cruden and Varnes 1996). 

 
The effect of the slide type and composition on impulse waves is addressed hereafter. 

Heller and Spinneken (2013) conducted 144 experiments in 2D based on block slides and 
compared the results to the 2D granular slide tests of Heller and Hager (2010) (Section 
3.2.4.2). They also varied three previously ignored block model parameters namely the 
blockage ratio b/bf = 0.88, 0.96 and 0.98 (the width of the slide b relative to the flume 
width bf), the slide front angle φ (30, 45, 60 and 90°) and the transition type at the slope 
toe (no transition where the blocks stopped immediately versus a circular transition where 
the blocks run-out more smoothly). The blocks with a slide front angle of 90° generated 
on average 55% larger wave heights H(x) than blocks with 30° and the wave heights 
generated with a circular transition were also 39% larger on average than in experiments 
with no transition. On the other hand, the change in the blockage ratio affected the wave 
height only by 8.9% on average. Based on these findings, Heller and Spinneken (2013) 
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found new correlations for their 2D block model experiments for all relevant wave pa-
rameters such as aMb, HMb, ab(x), Hb(x), etc. A systematic comparison of impulse waves 
generated by block compared to granular slides was performed by dividing their new 
equations by the equations for granular slides of Heller and Hager (2010) as introduced 
in Section 3.2.4.2.  

Figure 4-11 shows a graphical representation of the upper and lower envelopes of some 
of these results, namely the observed ratios aMb/aM, HMb/HM, ab(x)/a(x) and Hb(x)/H(x). 
The upper envelope is observed for the largest investigated blockage ratio b/bf = 0.98, 
φ = 90° and a circular transition such that the block runs out smoothly. This may represent 
the fairest comparison with granular slides in most situations as granular slides fill the 
entire channel width in 2D, they also adapt roughly to φ = 90° during impact and they 
also run out relatively smoothly, even for a very abrupt change in the slope at the slope 
toe.  The upper envelope shows that the impulse wave parameters generated by blocks 
are on average 1.3 to 1.9 times larger than generated by granular slides under otherwise 
identical conditions.  
 

 
Figure 4-11  Upper and lower envelopes of the values of waves generated by block relative to the ones of 

granular slides: (a) maximum wave amplitude aMb/aM versus impulse product parameter P, 
(b) maximum wave height HMb/HM versus P, (c) wave amplitude ab(x)/a(x) versus PX–1/3 and 
(d) wave height Hb(x)/H(x) versus PX–1/3 (after Heller and Spinneken 2013). 

 
Heller and Spinneken (2013) also showed that block slides may generate up to 0.4 

times smaller waves than granular slides if the block model parameters are much smaller 
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than b/bf = 0.98 and φ = 90° in combination with an abrupt change of the transition at the 
base of the slope such that the slide stops abrupt. The most extreme cases investigated are 
represented by the lower envelopes in Figure 4-11 (for b/bf = 0.88, φ = 30° and no transi-
tion (abrupt slide stop)). Whilst this lower case was observed in laboratory tests, it may 
be very rarely observed in real world events and also be challenging to predict. Details 
about this method and the corresponding empirical equations can be found in Heller and 
Spinneken (2013). 

Lindstrøm (2016) conducted five 2D experiments with a block and with four different 
granular materials with grain diameters of 3 to 25 mm. The investigated Froude numbers 
were in the range 0.34 ≤ F ≤ 0.93. Lindstrøm (2016) explained the change in the impulse 
wave magnitude in function of the slide type with the permeability k through the slide 
given by the Kozeny-Carman equation which simplifies for spherical grains impacting 
into water to  
 

3
255200
1g

ek d
e

=
+

  (4.7) 

 
dg [m] = Grain diameter 
e [-] = Void ratio; e = n/(1 − n) 
k [m/s] = Permeability  
n [-] = Bulk slide porosity 

 
If the granular slide impact velocity is Vs < k, then the water penetrates into the slide 

instantaneously as the slide enters the water, resulting in a reduction of the generated 
wave compared to a block. This was e.g. the case in Lindstrøm’s (2016) experiment based 
on alumina spheres with diameter dg = 0.025 m and porosity n = 0.43 where k = 6.13 m/s 
was computed, compared to Vs = 0.97 m/s. On the other hand, if Vs > k, the slide will not 
be instantaneously penetrated by water during wave generation and the generated impulse 
wave agree better with block slide waves.  

Equation (4.7) was developed for laminar flow through porous media (Carrier, 2003). 
This condition is not met for typical slide velocities during impulse wave generation. 
Nevertheless, the underlying principle still applies and helps to understand some previous 
findings in the technical literature; Zweifel (2004) found indeed in 2D experiments con-
ducted in the range 0.5 ≤ F ≤ 2.8 that impulse waves due to block slides generate up to 
7.5 times larger waves than granular slides at F = 0.5 (Vs < k), but only 1.37 times larger 
waves at F = 2.8 (Vs > k). The later value is close to the corresponding value observed in 
Figure 4-11(a) which in addition shows the velocity dependence (smaller differences be-
tween impulse waves generated by block to granular slides with smaller P). Heller and 
Hager (2010) found the grain size distribution for tests involving dg = 2, 4, 5, 8 mm and 
mixtures to be negligibly small for wave generation and Evers and Hager (2015) found 
by packing some of these materials into meshes that the differences between impulse 
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waves generated by free and mesh-packed granular materials are relatively small in 2D. 
However, some authors including Bolin et al. (2014) found that the effect of the grain 
size is not negligible anymore for a larger range of grain sizes namely 5 mm ≤ dg ≤ 100 
mm. This seemingly contradiction can be explained with the k concept: k may change 
insignificantly for the relatively small range of dg investigated by Heller and Hager 
(2010), but covers a wider range for larger ranges of dg as investigated by Bolin et al. 
(2014). 

The discussed studies in this Section 4.4 investigated the differences in impulse waves 
from block in relation to granular slides for the mass movement type “slide” (Figure 
4-10a). Tsunamis generated by the fall and toppling cases (Figure 4-10c,d) were com-
pared by Heller et al. (2019) in the context of iceberg calving. They conducted experi-
ments in a wave basin and the icebergs were modelled with polypropylene homopolymer 
blocks with a size of 0.80 m × 0.50 m × 0.50 m and 0.80 m × 0.50 m × 0.25 m. Several 
iceberg calving mechanisms were investigated including the fall and toppling (overturn-
ing) cases for subaerial, partially submerged and fully submerged icebergs. The overturn-
ing icebergs generated typically 50% larger maximum wave heights HM than the icebergs 
that felt vertically into the water body. 

Given that the slide type may change the wave magnitude by nearly a factor of 2 ac-
cording to Figure 4-11, this effect should be taken into account for masses impacting as 
a block rather than a granular material such as rockfalls or iceberg calving.  

 

4.5 Underwater slide deposits 

Slides with a density larger than water propagate into the water body and may affect the 
intake structure or safety organs of the reservoir such as the bottom outlet. The sediments 
may either damage the structure itself or block the respective inlet opening. The location 
(final slide front position 

endx′ ) and dimensions (maximum deposition thickness send) of 
the underwater slide deposits are therefore important in terms of a detailed hazard assess-
ment (Figure 4-12). 
 

 
Figure 4-12 Sketch defining the parameters for underwater slide deposits. 
 

The following equations are based on an analysis of the slide deposition geometry of 
41 selected laboratory tests conducted in a 2D test set-up (Fuchs et al. 2013). In addition 
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to the final slide deposits presented below, Fuchs et al. (2013) also specified more detailed 
slide features, such as the underwater slide front propagation and velocity. Generally, a 
larger slide impact leads to larger underwater slide protrusion and thus smaller deposition 
thickness. However, according to their analysis, the underwater slide deposition is well 
represented by the impact angle-corrected relative slide mass, a static parameter exclud-
ing the slide impact kinematics: 
 

( ) ( )2 sin 6 7s s wM m bhρ α=    .  (4.8) 

 
b [m]  = Slide width (Figure 3-3) 
h [m] = Still water depth (Figure 3-3) 
ms [kg] = Slide mass (Figure 3-3) 
Ms [-] = Impact angle-corrected relative slide mass 
α [°] = Slide impact angle (Figure 3-3) 
ρw [kg/m3] = Water density 

 
A good correlation resulted for the main underwater landslide deposition parameters, i.e. 
the front position and thickness. For increasing Ms, the relative end position 

endx′ /h in-
creases from 2 to 8 whereas the relative deposition thickness send/h decreases from 0.9 to 
0.3. 
 

( )1.88 2.7end sx h M′ = +   (4.9) 

 

( )0.79 0.2end ss h M= −   (4.10) 

 
h [m] = Still water depth (Figure 4-9) 
Ms [-] = Impact angle-corrected relative slide mass from Eq. (4.8) 
send [m] = Maximum thickness of slide deposits (Figure 4-9) 

endx′  [m] = Front position of slide deposits (Figure 4-9) 

 

Table 4-4 Limitations for underwater slide deposit calculations. 
Term Range Meaning 

Slide Froude number 0.86 ≤ F ≤ 4.6 F = Vs /(gh)1/2 
Relative slide volume 0.19 ≤ V ≤ 2.97 V = Vs/(bh2) 
Relative slide density 1.43 ≤ D ≤ 1.72 D = ρs/ρw 
Relative slide mass 0.27 ≤ M ≤ 5.0 M = ρsVs/(ρw bh2) 
Impact angle-corrected relative slide mass 0.13 ≤ Ms ≤ 3.9 Ms = M[sin(6/7)α] 
Impulse product parameter 0.18 ≤ P ≤ 4.83 P = FS1/2M1/4{cos[(6/7)α]}1/2 
Grain Reynolds number 8200 ≤ Rg ≤ 57000 Rg = Vsdg/ν 
Slide impact angle 30° ≤ α ≤ 90° α 

 



4 Step 2, sensitivity analysis and safety allowance 

70 

Note that laboratory tests commonly underestimate the slide run-out as the grain 
Reynolds number Rg at reduced size is smaller than in nature (Davies and McSaveney 
1999, Kesseler et al. 2018). Further, landslides of volumes in excess of 106 m3 show much 
larger run-outs above water than predicted with a typical basal friction angle, a phenom-
enon known as hypermobility or size effect (Pudasaini and Miller 2013). Large submarine 
landslides may also run-out significantly further than predicted with Eq. (4.9) (Hampton 
et al. 1996). Such effects may become relevant if the parameter limitations for the under-
water slide deposit computations in Table 4-4 are violated.  
 

4.6 Sensitivity analysis  

This Section discusses the sensitivity of the run-up height R to variations of the governing 
parameters and defines those parameters to which R reacts particularly sensitively. As 
comprehensive calculation equations are available mainly for the Step 1, the sensitivity 
analysis relates only to them (Figure 3-1). 
 

 
Figure 4-13 Calculation sequence to determine the effect on the run-up height R of a change of the slide 

impact velocity Vs by +20%. 

 
Figure 4-13 shows the calculation sequence to determine the effect on the run-up 

height R of a change of the slide impact velocity Vs by +20% for the 3D case (Subsection 
3.2.4.3). The following variables are included as initial governing parameters for wave 
generation and propagation: slide impact velocity Vs = 40 m/s, still water depth h = 50 m, 
slide thickness s = 5 m, bulk slide volume Vs = 50,000 m3, bulk slide density ρs = 1,700 
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kg/m3, slide width b = 50 m, slide impact angle α = 45°, radial distance r = 300 m and the 
wave propagation angle γ = 45° (Subsection 3.2.2). The governing parameters considered 
for wave run-up and dam overtopping are the still water depth h = 50 m and the run-up 
angle β  = 20° (Subsection 3.3.3). In this procedure, Vs was each time multiplied with 1.2 
rather than 1.0, in order to determine the relative change. The value Vs occurs linearly in 
F and P. Equation (3.26) shows that the initial first wave crest amplitude a0,c1 is propor-
tional to P1/2, and the relative change decreases to (1.2/1.0)1/2 = 1.095 or +9.5%. The per-
centage change may be determined in steps for all those variables which are influenced 
directly or indirectly by Vs. Finally, the change of R may be determined. An increase of 
Vs by +20% raises R by +15.6% (Figure 4-13) for the given set of initial parameters. As 
the value of R is sensitive to Vs, the precise determination of the latter variable is im-
portant. 

Analogous to Figure 4-13, the sensitivity of the run-up height R (Eq. 3.36) to a change 
by ±20% for the same set of initial parameters is determined for each of the individual 
governing parameters. These are illustrated in Figure 4-14. The individual parameters are 
presented in percentages as a bar chart, giving the variations and the extent of the effect 
on R. The radial distance r was intentionally not considered, as it may be determined 
precisely. The bulk slide porosity n was also neglected as it is only indirectly included in 
the equations through ρs.  
 

 
Figure 4-14 Sensitivity of the run-up height R according to Eq. (3.36) as a consequence of a variation of 

+20% (left) and −20% (right) of selected initial governing parameters for the 3D case, with 
an increasing effect in red and a decreasing effect in green on R. 

 
The run-up height is particularly sensitive to the slide width b and slide impact veloc-

ity Vs because any variation of these slide parameters has a substantial influence (Figure 
4-14). The wave propagation angle γ is not known exactly if the slide slope is inclined 
laterally and the principal impulse direction of the slide cannot be given clearly. The value 
R also reacts sensitively to γ. Finally, a relatively precise determination of the still water 
depth h and the slide thickness s are important. The effects of Vs, ρs, α and β on R are of 
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secondary importance. From Figure 4-14 it can also be seen whether an increase or a 
decrease of a governing parameter acts negatively (red) or positively (green) on the value 
of R. To be on the safe side, the selected values of b, Vs, as well as of s, should be rather 
greater than estimated, and the corresponding values of h and γ  rather smaller. 

Figure 4-14 shows only the sensitivity of R to variations in each of the governing 
parameters by ±20% for a selected parameter set. Combinations of changes in the gov-
erning parameters were not considered. Note, especially in the 3D case, the effect of pa-
rameter variation does not propagate linearly and different sets of initial parameters may 
yield different sensitivities. Neither was the sensitivity of further variables such as the 
additional horizontal force component ∆Fh or the overtopping volume V per unit dam 
crest length included in Figure 4-14. Therefore, a specific sensitivity analysis should be 
conducted e.g. by applying the computational tool presented in Section 5.5. 

 

4.7 Safety allowance 

Basically, any dam overtopping by impulse waves should be prevented by precautionary 
water level lowering of the reservoir. Some safety considerations are given in this section. 
Further points are possible, depending on the prototype, and must be considered from 
case to case. The following factors affect the selection of safety reserves, for instance 
with regard to the run-up height R: 
 

(i) Scatter of the measurement points in the empirical equations 
(ii) Probability of occurrence of mass movement 
(iii) Extent of the deviations from the idealisation of Step 1 
(iv) Dam type (concrete dam, embankment dam with or without protective face) 
(v) Damage potential in the valley downstream of the dam 

 
These factors are discussed in more detail hereafter. 
 

(i) Scatter of the measurement points in the empirical equations 
 
The empirical equations presented in Chapter 3 are based on laboratory experiments. 
These equations do not accurately predict the measured data points, but the data points 
scatter within a certain range. The computational procedure of Chapter 3 applies these 
equations sequentially to calculate a target quantity. Similar to the calculation of error 
propagation (e.g. Hughes and Hase 2010), each individual scatter range needs to be 
considered to assess the prediction uncertainty of the overall process chain; i.e. the 
overall scatter of the run-up height R (Eq. 3.36) includes the individual scatter ranges 
of R as well as the wave amplitude a. For equation types composed as a product of 
power laws, the maximum relative scatter is equal at most to the sum of the individual 
values of the relative scatter of the parameters involved (Heller et al. 2009). In this 
case, a constant overall scatter value may be determined independently of the size of 
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the input parameters. For equations that are more complex, no single value for the 
overall scatter range may be given, but an individual determination for the present set 
of parameters is required. For example, the limitations for R regarding the relative 
wave crest amplitude ε = a/h include 0.007 as the minimum and 0.69 as the maximum 
value (Table 3-4). With a scatter range of +25%,−45% (Table 4-5) for the first wave 
crest amplitude ac1 (Eq. 3.29) and ±20% for the run-up height R (Eq. 3.36), the max-
imum overall scatter of R results in +50%, −56% for ε = 0.007 and ±61% for ε = 0.69, 
respectively. Note, that the example does not consider the scatter range as a normally 
distributed probability density function, but assumes the likelihood of occurrence to 
be constant within the given scatter range. This approach yields a more conservative 
estimation of the overall scatter range. 

Similar to the sensitivity analysis, the uncertainty propagation may be assessed by 
applying the computational tool (Hughes and Hase 2010). Table 4-5 gives individual 
scatter ranges for those equations, for which scatter ranges were provided in the orig-
inal references. The scatter ranges are valid within the parameter limitations given in 
Chapter 3. Outside these limitations, the scatter may increase. Note that, except for 
the overtopping volume per unit crest length V at rigid dams (Eq. 3.38), all remaining 
wave overtopping related Eqs. (3.39) to (3.40) are based on solitary waves (a/H = 1). 
Consequently, larger scatter may arise for a/H < 1. 
 
(ii) Probability of occurrence of mass movement 
 
There are a number of signs that may indicate a larger probability of a catastrophic 
mass movement. For example already instable soil masses, e.g. creeping landslides, 
or metastable masses, e.g. dormant landslides that are only activated depending on 
pore water conditions, indicate zones with larger sliding potential. But also zones with 
increasing loss of permafrost may e.g. indicate a growing thread of collapse of rock 
masses. These situations do not form a complete list but aim to give examples for 
indicators of potentially catastrophic sliding. The higher the risk of occurrence of a 
slide, the more safety allowances are recommended. 
 
(iii) Extent of the deviations from the idealisation of Step 1 
 
In Step 1, according to Figure 3-1, computation equations are available. In Step 2, the 
effects of deviations from the idealisation in the Step 1 can often only qualitatively be 
determined. The greater the deviation from the idealised concept (e.g. rectangular res-
ervoir form, granular slide), the greater safety allowances are needed. 
 
(iv) Dam type (concrete dam, embankment dam with or without protective face)  
 
Embankment dams without protection faces may be eroded by overtopping caused by 
impulse waves and, in the extreme case, this may lead to dam failure (Singh 1996). 



4 Step 2, sensitivity analysis and safety allowance 

74 

Gravity and arch dams are more resistant in this respect. For example the Vaiont arch 
dam withstood overtopping by an impulse wave and suffered no damage except at the 
left hand side of the dam crest (Schnitter 1964). 
 
(v) Damage potential in the valley downstream of the dam 
 
The greater the population of the downstream valley that would be affected by the 
effects of an overtopping impulse wave or the greater the importance of the infrastruc-
ture of the valley, the larger should be the safety allowances. To determine the areas 
which would be affected, a numerical dam break simulation may be carried out. 

 
Points (i) to (v) must be assessed case by case. Selection of the safety allowances depends 
much on the characteristics of the prototype. A publication by the International Commis-
sion On Large Dams ICOLD (2002) addresses risk management with regard to potential 
slides into reservoirs. 
 

Table 4-5 Scatter ranges of empirical prediction equations. 
Term Symbol Equation Scatter 

Maximum wave height (2D) HM Eq. (3.13) ±30% 
Streamwise distance of HM (2D) xM Eq. (3.14) ±50% 
Wave period of HM (2D) TM Eq. (3.15) ±50% 
Wave celerity (2D) c Eq. (3.17) ±15% 
Wave height (2D) H Eq. (3.19) ±30% 
Wave period (2D) T Eq. (3.20) ±100% 
First wave crest amplitude (3D) ac1 Eq. (3.29) +25%, −45% 
First wave trough amplitude (3D) at1 Eq. (3.30) +40%, −25% 
Second wave crest amplitude (3D) ac2 Eq. (3.31) +50%, −60% 
First wave crest celerity (3D) cc1 Eq. (3.32) +10%, −15% 
Second wave crest celerity (3D) cc2 Eq. (3.33) +15%, −25% 
First wave period (3D) T1 Eq. (3.34) +15%, −10% 
Run-up height R Eq. (3.36) ±20% 
Overtopping volume per unit length dam crest (rigid dam) V Eq. (3.38) ±30% 
Maximum overtopping flow depth (rigid dam) d0 Eq. (3.39) ±10% 
Wave overtopping duration (rigid dam) tO Eq. (3.40) ±10% 
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5 Computational examples 

5.1 Example 1 

5.1.1 Problem description and governing parameters 

Figure 5-1 shows the reservoir geometry assumed for example 1. A rockfall at location 
A threatens to impact into a reservoir, which is covered by a 0.25 m thick layer of ice. 
Opposite the impact location there are critical infrastructure buildings. The maximum 
run-up height at point B as well as potential overland flow characteristics have to be 
determined. In addition, it has to be estimated whether the arch dam will be overtopped 
by the impulse wave and if so by how much the reservoir would have to be drawn down 
in order to prevent this overtopping. The freeboard at the shore is f = 10 m (Point B), 
while it is f = 4 m at the dam (Point C). The sections A-B and A-C, corresponding to the 
dashed lines in Figure 5-1, are shown in Figure 5-3. 

Figure 5-1 Reservoir geometry for example 1 with a rockfall impacting at point A; the reservoir is 
impounded by an arch dam. 

The slide impact velocity Vs can be calculated using the detail from Figure 5-3(a) as 
shown in Figure 5-2. The parameters required to do this are given in Table 5-1. As there 
is a slope change, it is necessary to use both Eqs. (3.5) and (3.9) for the calculation of 
Vs. The slide velocity at the point of slope change VsNK is given by 
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( )2 1 tan cotsNK scN N NV g z δ α= ∆ −  after Eq. (3.5) 

2 9.81 100(1 tan 20 cot 70 )sNKV = ⋅ ⋅ − ° ° = 41.3 m/s. 
 
From this the slide impact velocity Vs can be calculated as 
 

( )2 2 1 tan cots sNK scV V g z δ α= + ∆ −  after Eqs. (3.2), (3.5) and (3.9) 

241.3 2 9.81 150(1 tan 20 cot 40 )sV = + ⋅ ⋅ − ° ° = 58.0 m/s. 
 
The calculated value of Vs, the governing parameters for wave generation, and those for 
the determination of the effects on the arch dam and on the opposite shore of the reser-
voir, are summarised in Table 5-2. The value b denotes the mean slide width and s is the 
maximum slide thickness in the impact zone. The values of bulk slide density ρs and 
bulk slide volume Vs also refer to the impact zone. The slide axis (γ = 0°) is governing 
for the selection of the still water depth h (Figures 5-1 and 5-2). 
 

 
Figure 5-2 Parameters for the calculation of the slide impact velocity Vs. 

 

Table 5-1 Governing parameters for the slide impact velocity Vs according to Figure 5-2. 
First slope section Second slope section 

Term Symbol Unit Value Term Symbol Unit Value 
Drop height of centre ΔzscN [m] 100 Drop height of centre Δzsc [m] 150 
Dynamic bed friction angle δN [°] 20 Dynamic bed friction angle δ [°] 20 
Hill slope angle αN [°] 70 Hill slope angle α [°] 40 
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Figure 5-3 Sections for example 1 after Figure 5-1: (a) section A-B with rockslide and still water depth 

h = 80 m along the slide axis and (b) section A-C; the dashed lines indicate the idealised ge-
ometry for Step 1. 

 

Table 5-2 Governing parameters for impulse wave generation and the effects on the opposite shore, as 
well as on the arch dam. 

Term Symbol Unit Value Term Symbol Unit Value 

Still water depth (impact) h [m] 80 Bulk slide volume Vs [m3] 220,000 
Slide thickness s [m] 12 Bulk slide density ρs [kg/m3] 1,700 
Slide width b [m] 100 Bulk slide porosity n [%] 35 
Slide impact velocity Vs [m/s] 58 Slide impact angle α [°] 40 

Section A-B (shore)    Section A-C (dam)    

Radial distance r [m] 440 Radial distance r [m] 300 
Wave propagation angle γ [°] 0 Wave propagation angle γ [°] −48 
Still water depth h [m] 85 Still water depth h [m] 100 
Run-up angle β [°] 27 Run-up angle β [°] 90 
Freeboard f [m] 10 Freeboard  f [m] 4 
Overland flow distance xov [m] 50 Crest width bK [m] 8 
 

5.1.2 Step 1 

In this section, Step 1 is carried out, in accordance with Figure 3-1. The impulse wave 
propagates radially and completely freely. Hence, the wave parameters can be computed 
using the 3D equations for the reservoir of rectangular form (Subsection 3.2.1). The 
calculation proceeds in several partial steps: 
 

a) Dimensionless parameters and limitations check on the calculation of the wave gen-
eration and propagation 
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For optimum prediction with this computational procedure the dimensionless parame-
ters of the prototype must be within the range of limitations for use of the calculation 
equations. The relevant dimensionless parameters and limitations (Subsection 3.2.4) are 
given in Table 5-3. 
 

Table 5-3 Dimensionless parameters and limitations check for the calculation of the wave generation 
and propagation. 

Term Dimensionless parameter Range Satisfied? 

Slide Froude number F = 58/(9.81·80)0.5 = 2.07 0.40 ≤ F ≤ 3.40 Yes 
Relative slide thickness S = 12/80 = 0.15 0.15 ≤ S ≤ 0.60 Yes 
Relative slide density D = 1,700/1,000 = 1.70 (0.59 ≤ D ≤ 1.72) (Yes) 
Relative slide volume V = 220,000/(100·802) = 0.34 0.187 ≤ V ≤ 0.750 Yes 
Relative slide mass M = 1,700·220,000/(1000·100·802) = 0.58 0.25 ≤ M ≤ 1.00 Yes 
Bulk slide porosity n = 35% (30.7 ≤ n ≤ 43.3) (Yes) 
Relative slide width B = 100/80 = 1.25 0.83 ≤ B ≤ 5.00 Yes 
Slide impact angle α = 40° 30° ≤ α ≤ 90° Yes 
Impulse product parameter P = 2.07·0.150.5·0.580.25·cos[6/7(40°)]0.5 = 0.64 0.13 ≤ P ≤ 2.08 Yes 
Relative radial distance (A-B) r/h = 300/80 = 3.75 1 ≤ r/h ≤ 16 Yes 
Relative radial distance (A-C) r/h = 440/80 = 5.5 1 ≤ r/h ≤ 16 Yes 
Wave propagation angle (A-B) γ = 0° −90° ≤ γ ≤ 90° Yes 
Wave propagation angle (A-C) γ = −48° −90° ≤ γ ≤ 90° Yes 
 

In the wave generation phase all limitations are satisfied. The limitation ranges of the 
relative slide density D and the bulk slide porosity n are given in brackets, as these are 
within the slide density’s extended parameter range of the impulse product parameter P 
for 3D wave generation and propagation (Subsection 3.2.4.3). 
 

b) Calculation of wave generation and propagation 
Wave generation will be analysed using the 3D method, as described in Subsec-
tion 3.2.4.3, for which important variables are the wave amplitudes ac1, at1 and ac2, the 
first wave height H1, and the first wave crest celerity cc1. The impact radius r0,0° and 
r0,90° as well as the initial wave amplitudes a0,c1, a0,t1 and a0,c2 are independent from the 
considered wave propagation directions for both sections A-B and A-C and are deter-
mined as 
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The largest wave amplitudes are to be expected on the slide axis γ = 0°. Lateral to the 
slide axis γ = 0°, the wave amplitudes decrease. At point B, the wave amplitudes are 
noticeably greater than at point C, even though the radial distance r on section A-C is 
shorter than for section A-B. 

To determine the travel time of the first wave between the points A and B and be-
tween A and C (Figure 5-1), the first wave crest celerity cc1 has to be known, which is 
given with  
 

1 1( *, ) 0.95 ( )c cc r g h aγ = +  Eq. (3.32) 
 

Equation (3.32) yields the instantaneous wave crest celerity at a specific location (r*, γ). 
To estimate the travel time, a mean celerity for the overall propagation distance is se-
lected. With a0,c1 = 14.4 m and ac1(260 m, 0°) = 4.3 m, the mean (subscript m) first 
wave crest amplitude for section A-B is ac1,m = (14.4 + 4.3)/2 = 9.4 m. With a mean still 
water depth hm = (80 + 85)/2 = 82.5 m (Figure 5-3a), the mean wave crest celerity is 
 

1, 1,0.95 ( )c m m c mc g h a= +   

1, 0.95 9.81(82.5 9.4) 28.5c mc = + = m/s 
 

The impulse wave covers the distance r = 440 m to the shore in roughly 
r/c = 440/28.5 = 15 s.  

For section A-C with γ = −48°, the wave amplitude ac1 at r0 needs to be computed. 
For r* = 0, the exponential terms in Eq. (3.29) equal 1 and the equation simplifies to 
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With a mean still water depth hm = (80 + 100)/2 = 90 m (Figure 5-3b) and a mean wave 
amplitude ac1,m = (6.6 + 2.9)/2 = 4.8 m between point A and C, the mean wave celerity 
is 
 

1, 1,0.95 ( )c m m c mc g h a= +   

1, 0.95 9.81(90 4.8) 29.0c mc = + = m/s 

 
The impulse wave takes about r/c = 300/29 = 10 s to travel the 300 m from the impact 
location (point A) to the arch dam (point C).  
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c) Wave run-up including limitations check 
With help of the wave parameters calculated in b), the dimensionless parameters for the 
arch dam as well as the run-up height R (Eq. 3.36) may be computed. The still water 
depth h = 85 m in front of the dam is thereby considered. Note, that the effect of shoal-
ing may be taken into account in Step 2. For both sections, the second wave crest ampli-
tudes ac2 are larger and are therefore considered for the estimation of R. As distinct from 
the case when waves run-up smooth and impermeable dams, the neglected governing 
parameters in Eq. (3.36), i.e. the permeability and roughness of the shore, may be rele-
vant as they attenuate the run-up height R. The value obtained with Eq. (3.36) for point 
B at the shore thus tends to over-estimate the run-up height R. In Tables 5-4 and 5-5 
compliance with the limiting parameters is verified and then the run-up height R is 
computed. To check the non-linearity limitation, the wave height H is approximated 
with H = ac2 + at1. 
 

Point B 
 

Table 5-4 Dimensionless parameters and limitations check for the calculation of wave run-up at 
point B. 

Term Dimensionless parameter Range Satisfied? 

Relative wave crest amplitude ε = ac2/h = 7.2/85 = 0.085 0.007 ≤ ε ≤ 0.69 Yes 
Non-linearity ac2/H = 7.2/(7.2+7.9) = 0.48 0.57 ≤ a/H ≤ 1.04 No 
Run-up angle β = 27° 10° ≤ β ≤ 90° Yes 
Slope parameter So = 1.521(tan 27°/ 0.0850.5) = 2.7 So ≥ 0.37 Yes 

 

( )
0.2

902 exp 0.4R a ε
β

 °
=  

 
 Eq. (3.36) 

0.27.2 902 7.2exp 0.4 19.0
85 27

R °  = ⋅ =  °  
m 

 
Point C 

 

Table 5-5 Dimensionless parameters and limitations check for the calculation of wave run-up at 
point C. 

Term Dimensionless parameter Range Satisfied? 

Relative wave crest amplitude ε = ac2/h = 4.2/100 = 0.042 0.007 ≤ ε ≤ 0.69 Yes 
Non-linearity ac2/H = 4.2/(4.2+4.5) = 0.48 0.57 ≤ a/H ≤ 1.04 No 
Run-up angle β = 90° 10° ≤ β ≤ 90° Yes 
 
 

( )
0.2

902 exp 0.4R a ε
β

 °
=  

 
 Eq. (3.36) 
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Only the non-linearity a/H exceeds the limitations for sections A-B and A-C. However, 
this may have just a small effect on the results. For section A-C there is no need to 
check the slope parameter as So → ∞ for β → 90° and no wave-breaking is expected. 
The impulse waves will, according to the preceding calculations, overtop the dam with a 
freeboard of f = 4 m at point C, since R > f.  
 
e) Overland flow 
As the freeboard of f = 10 m is smaller than the run-up height of R = 19 m at point B, a 
part of the impulse wave will transform to overland flow. New limitations govern the 
determination of the overland flow characteristics (Section 3.4):  
 

Point B 
 

Table 5-6 Dimensionless parameters and limitations check for the calculation of overland flow at 
point B. 

Term Dimensionless parameter Range Satisfied? 

Relative wave crest amplitude ε = ac2/h = 7.2/85 = 0.085 0.1 ≤ ε ≤ 0.7 No 
Relative freeboard f/h = 10/85 = 0.12 0.04 ≤ f/h ≤ 0.56 Yes 
Run-up angle β = 27° 11° ≤ β ≤ 34° Yes 
Overland flow distance xov/w = 50/(85+10) = 0.53 0 ≤ xov/w ≤ 10 Yes 
 

( )0.05tan
3min

f
h
β

ε =  Eq. (3.42) 

( )0.0510 tan 27
0.038

3 100minε
°

= =
⋅

  

 

min 0.085 0.038 0.05effε ε ε= − = − =  Eq. (3.43) 
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w
h

β

β ε+
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 Eq. (3.45) 
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 Eq. (3.47) 
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( ){ }0.39*
0 1 tanh 0.54max maxd d x = −   

 Eq. (3.46) 

( ){ }0.394.0 1 tanh 0.54 0.6 2.3maxd  = − =  m 

 
0.75

, 1.6 tanh 2.2f max eff
hv c
w

ε
  =   

   
 Eq. (3.49) 
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,
851.6 9.81(85 7.2) tanh 2.2 0.05 9.7

85 10f maxv
  = + =  +   

m/s 

 
The maximum flow depth at the transition point from the shore slope to the horizontal 
foreland is d0 = 4.0 m. After xov = 50 m, the maximum flow depth reduces to 
dmax = 2.3 m. The estimated maximum flow front velocity is vf,max = 9.7 m/s. However, 
since xov/w < 5, this value represents an extreme value and is expected to be lower at the 
infrastructure buildings at xov = 50 m (Subsection 3.4.5).  

The relative wave crest amplitude ε is slightly smaller than the limitation range giv-
en in Table 5-6. Given that the deviation from the lower limit is small, only minor ef-
fects on the results are expected. 
 
e) Wave overtopping 
As the dam’s freeboard of f = 4 m is smaller than the run-up height of R = 8.5 m at point 
C, a part of the impulse wave will overtop the dam. New limitations govern the deter-
mination of the overtopping characteristics (Subsection 3.3.4): 
 

Point C 
 

Table 5-7 Dimensionless parameters and limitations check for the calculation of wave overtopping at 
point C. 

Term Dimensionless parameter Range Satisfied? 

Relative wave crest amplitude ε = ac2/h = 4.2/100 = 0.042 0.013 ≤ ε ≤ 0.700 Yes 
Relative effective wave amplitude aw/bK = (4.2 – 4.0)/8 = 0.025 0.02 ≤ aw/bK ≤ 130 Yes 
Relative still water depth h/w = 100/104 = 0.96 0.67 ≤ h/w ≤ 1.00 Yes 
Dam angle β = 90° 18.4° ≤ β ≤ 90° Yes 
Non-linearity ac2/H = 4.2/(4.2+4.5) = 0.48 0.63 ≤ a/H ≤ 1.00 No 
Relative crest width bK/w = 8/(100+4) = 0.08 0.002 ≤ bK/w ≤ 0.530 Yes 
 

V

0.70.121.5
2
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1.35 w
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aa h h
H w b

ε β

ε
°      =            

 Eq. (3.38) 
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The average discharge per unit length dam crest is thus 
 

qm = V /tO Eq. (3.41) 
q0m = 93 /14.5 = 6.4 m2/s. 

 
The maximum discharge per unit length dam crest is according to Subsection 3.3.4 
qM ≈ 2∙qm = 2∙6.4 = 12.8 m2/s, but this occurs for only a few seconds. From Table 5-7 it 
may be seen that the non-linearity limitation criterion 0.63 ≤ a/H ≤ 1.00 is not satisfied. 
Analogous to the run-up height R, this may have just a small effect on the results. In any 
case, the equations describing the overtopping processes are based on solitary wave 
experiments and may therefore be regarded as conservative approximations. 
 
f) Force effect on the arch dam during overtopping 
The total horizontal force component at point C with ε = a/h = 0.11 is 
 

[ ] 1/6, 1 1.5( / ) ,tot h hs hF a h F= −    Eq. (3.54) 

Ftot,h = [1 − 1.5(4.2/100)]1/6(1/2)1,000∙9.81(2∙4.2 + 100)2 = 56.9∙106 N/m. 
 

As some of the impulse wave will overtop the arch dam, the structure does not receive 
the full horizontal force component, as shown in Figure 3-11(b). The reduced horizontal 
force component can be computed via  the pressure at dam crest pK given by 
 

2

2 , (2 )
(2 )

tot h
K

Fp a f
a h

= −
+

   Eq. (3.56) 
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6

2

2 56.9 10 (2 4.2 4)
(2 4.2 100)Kp ⋅ ⋅

= ⋅ −
⋅ +

= 41,879 N/m2. 

 

The reduced total horizontal force component Ktot,h,red per unit length dam crest result-
ing from an impulse wave and hydrostatic pressure is 
 

2 ,( ), ,
2 2

tot h
tot h red K

Fh fF p
a h

+  = + + 
    Eq. (3.57) 

6(100 4) 2 56.9 10, , 41,879
2 2 4.2 100tot h redK

 + ⋅ ⋅
= + ⋅ + 

 = 56.8∙106 N/m. 

 

The elevation zK,tot,h,red of the resultant of Ktot,h,red is 
 

[ ] ( ) ( )

[ ] ( )

2 2

2 , /(2 )
6 2, , ,
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2

tot h K K
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 Eq. (3.58) 

( ) ( )

( )

2 2
6

6

100 4 100 4
2 56.9 10 / (2 4.2 100) 41,879 41,879

6 2, , , 100 42 56.9 10 / (2 4.2 100) 41,879 41,879 100 4
2

36 m.

K tot h redz

+ +
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=

 

 

If Ftot,h,red is reduced by the horizontal force component FRW,h resulting from hydrostatic 
pressure then the additional horizontal force component resulting only from the impulse 
wave is obtained as 
 

, , , , ,h tot h red RW h tot h redF F F F∆ = − =  − 2 / 2wghρ  Eq. (3.57) − Eq. (3.52) 

∆Fh = 56.9∙106 –1,000∙9.81∙1002/2 = 7.9∙106 N/m. 
 

The additional horizontal force component ∆Fh resulting only from the impulse wave is 
relative to the hydrostatic effect 7.9∙106/[1,000∙9.81∙1002/2] = 16%. This additional 
impulse wave force component acts on the arch dam for only a short time, typically for 
a few seconds. The total horizontal force component F tot,h is only marginally reduced by 
the overtopping depth over the dam crest, which is d0 = 4.9 m. Furthermore, no vertical 
force component is created as the upstream dam face is vertical (Subsection 3.5.2). 
 
g) Required freeboard to prevent overtopping 
The required freeboard f sufficient to ensure that the arch dam is not overtopped by the 
impulse wave, can now be determined. The run-up height at point C is equal to R = 
8.5 m, whereas the freeboard is 4 m. Whether emergency drawdown of the reservoir by 
the difference R − f = 4.5 m will be adequate to prevent overtopping, is difficult to judge 
before a new calculation is made. This is because, when the reservoir level is lowered, 
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certain governing parameters such as the slide impact velocity Vs may change in an 
unfavourable sense. In this example, lowering the reservoir level by 10 m is assumed, 
giving a new freeboard of f = 14 m, and all calculations for section A-C have then to be 
repeated. 
 

 
Figure 5-4 Section A-C after 10 m emergency drawdown of the reservoir and still water depth h = 70 m 

on the slide axis; the dashed line indicates the idealised geometry for Step 1. 

 
The new slide impact velocity is 
 

)cottan1(22 αδ−∆+= scsNKs zgVV  after Eqs. (3.2), (3.5) and (3.9) 

241.3 2 9.81 160(1 tan 20 cot 40 )sV = + ⋅ ⋅ − ° ° = 59.0 m/s. 
 
New dimensionless parameters (step a): 
 
F = 2.25, S = 0.17, D = 1.70, V = 0.45, M = 0.76, n = 35%, B = 1.43, α = 40°, P = 0.79, 
r/h = 4.3 and γ ≈ −48°. The limitations of the parameters in the impact zone are there-
fore still satisfied. 
 
New wave parameters (step b): 
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New wave run-up height considering the second wave crest amplitude ac2 (step c): 
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Table 5-8 Dimensionless parameters and limitations check for the calculation of wave run-up at point 
C, following drawdown by 10 m. 

Term Dimensionless parameter Range Satisfied? 

Relative wave crest amplitude ε = ac2/h = 4.0/90 = 0.044 0.007 ≤ ε ≤ 0.69 Yes 
Non-linearity ac2/H = 4.0/(4.0+4.7) = 0.46 0.57 ≤ a/H ≤ 1.04 No 
Run-up angle β = 90° 10° ≤ β ≤ 90° Yes 

 
Wave overtopping (step e): 
 
For R = 8.0 m < f = 14 m, overtopping by an impulse wave after Step 1 is improbable. 
The assessment of Step 2 is given in Subsection 5.1.3. 
 
New force effect (step f): 
 
The horizontal force components Ftot,h and ∆Fh are 
 

[ ] 1/6, 1 1.5( / ) ,tot h hs hF a h F= −    Eq. (3.54) 

Ftot,h = [1 − 1.5(4.0/90)]1/6∙0.5∙1,000∙9.81(2∙4.0 + 90)2 = 46.5∙106 N/m, 
 

, , ,h tot h RW h tot hF F F F∆ = − =  − 2 / 2wghρ   Eq. (3.54) – Eq. (3.52) 

∆Fh = 46.5∙106 – 1,000∙9.81∙902/2 = 6.8∙106 N/m. 
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The elevation zK,tot,h of the resultant of Ftot,h is located at (2a + h)/3 = (2∙4.0 + 90)/3 = 
33 m (Subsection 3.5.2). The additional horizontal force component ∆Fh resulting from 
impulse wave is 6.8∙106/(0.5∙1,000∙9.81∙452) = 17% relative to the hydrostatic effect. 

The equations used in this section are based on laboratory test results with some 
having a high degree of scatter (Section 4.7). When drawing down the reservoir, there-
fore, a safety allowance should be allowed for. Decisive is now Step 2, described in 
Subsection 5.1.3. 

5.1.3 Step 2 

Basically, the characteristics of an impulse wave can be relatively well predicted from 
the reservoir geometry shown in Figure 5-1 with the help of generally applicable equa-
tions, as the reservoir geometry allows freely, radial wave propagation in 3D according 
to extreme case (b) (Subsection 3.2.1). 

In the following section, the parameters after reservoir drawdown are applied. The 
deviations discussed below relate to the wave amplitudes ac1, at1, and ac2, or directly to 
the run-up height R. Compared with Step 1 as shown in Figure 3-1, the following phe-
nomena could lead to deviations: 
 

• Exceeding of the limitations 
• Solid body movement instead of granular slide 
• Ice cover 
• Volumetric displacement due to rockfall 
• Reflection 
• Shoaling 
• Constriction 

 
The limitations relating to the wave’s non-linearity a/H for points B and C, as well 

as those for the calculation of the overland flow, are not satisfied. As the effect of this is 
not known, the uncertainty of the results will increase. 

How big will the largest impulse wave be if the slide impacts into the reservoir as a 
solid body? This might result in a higher impulse wave, compared with the modelled 
granular slide in Step 1. The solid slide is not expected to stop abruptly on the given 
bathymetry and the underwater slide propagation is therefore similar to granular slides 
(Figure 5-3). If Figure 4-11(c) is applied for the amplitude ac2 = 4.0 m in front of the 
arch dam after drawdown, an increase of impulse wave amplitudes between 30% and 
75% may be expected compared with the calculation in Step 1 (solid line in Figure 4-
11c) , i.e. ac2 = 5.2 … 7.0 m.  

The ice cover of 0.25 m thickness will be pierced by the slide. As the ice sheet is 
lifted by the wave crest it will break up under its own weight, so that resulting decay of 
the impulse wave will only be insignificant (Section 4.3). 
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The reservoir surface area is about 2.7∙105 m2 (Figure 5-1). The reservoir water level 
will rise as a result of the volumetric displacement by the bulk slide mass of 
Vs = 220,000 m3 by about (220,000∙0.65)/270,000 ≈ 0.5 m, if the bulk slide porosity 
n = 35% is accounted for. 

Wave reflections also have no significant effect in Figure 5-1, as aR ≤ a (Figure 4-
2a), which is also valid for the wave height. In addition, the wave will be reflected 
perpendicular at point B (angle of incidence equals angle of reflection) and is not di-
rected against the dam. 

The wave crest celerity cc1 or cc2 show whether the impulse wave propagates as 
deep, intermediate or shallow-water wave. According to Eqs. (3.32) and (3.33), cc1 and 
cc2 reach approximately 95% and 70%, respectively, of the solitary wave celerity (Eq. 
2.2). Therefore, the impulse wave behaves as an intermediate-water wave (2 ≤ L/h ≤ 20, 
c > 0.4(gh)0.5; Section 2.1), and is partly influenced by the reservoir bed. An increase of 
the water depth leads to a decrease of the height or amplitude, respectively, of interme-
diate-water waves. This effect may be estimated for section A-C in Figure 5-4(b) by 
assuming a constant energy flux for shallow and intermediate-water waves (Section 
4.2). The value of ac2 = 4.0 m was determined as the largest wave crest amplitude, 
providing h = 70 m remains constant as far as the arch dam. These values are marked 
with index 1. If the still water depth h is greater, some of the wave energy will spread 
over the additional water depth, and the wave amplitude will be reduced. Index 2 de-
notes the condition when h = 70 m (indicated by a dashed line in Figure 5-4b) changes 
to h = 90 m. As the widths b1 = b2 remain roughly identical, the new wave amplitude a2 
at point C is given by 
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a h
a h
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 = 3.8 m. 

 
Due to the increase of the still water depth from 70 to 90 m, the wave height close to the 
shore decreases from 4.0 m to 3.8 m, or by 5%. Close to the shore at point B (Figure 
5-3a) the opposite occurs as the impulse wave height increases as a consequence of the 
shallower still water (Figure 4-2b). This effect is already accounted for in the run-up 
formula, as the shallower still water results from the underwater extension of the shore 
inclination with the run-up angle of β = 27°. 

Constriction of the dam abutments leads to an increase of the wave height and hence 
also of the run-up height. If, furthermore, the lateral flank near the abutments is inclined 
this leads to an additional increase of the run-up height. The narrowing and inclination 
of the flank, as shown in Figure 4-7, have an effect of about 30%. 

In summary an increase of the still water depth h towards the arch dam results in a 
decrease of a and thus of R; on the other hand, however, constriction and the lateral 
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flank inclination at the dam abutments, as well as the slide behaving as a solid body, 
may lead to a significant increase. The constriction (≈ +30%) and the influence of the 
solid body (≈ +30-75%) are dominant compared with the effect of the decrease of the 
still water depth (≈ −5%). According to Eq. (3.36) the run-up height is at least double 
the wave amplitude. With ac2 = 4.0·(1.75·1.30·0.95) = 8.6 m as the most unfavourable 
combination of these effects for a solid body slide, 2·8.6 m = 17.2 m > 14 m = f, the 
drawn down of 10 m might not be sufficient to prevent overtopping. Hence, to prevent 
any overtopping, the reservoir drawdown has to be increased further. The calculation 
has, therefore, to be repeated for the greater estimated drawdown value of about 15 m 
and the corresponding parameters. 

5.1.4 Conclusions 

The reservoir shape shown in Figure 5-1 is ideal for the computational procedure shown 
in Figure 3-1. The run-up height at the arch dam, as determined in Step 1, is R = 8.5 m, 
and exceeds the freeboard of f = 4 m (Table 5-2). An impulse wave will therefore over-
top the dam crest. Following reservoir drawdown of 10 m (Figure 5-4) to give a free-
board of f = 14 m, the calculated run-up height according to Step 1 is R = 8.0 m. 

The use of Step 2, as per Figure 3-1, leads to a run-up height R which is 115% 
greater than that calculated in Step 1. The reason for this is above all the fact that, as 
distinct from Step 1, the slide behaves as a solid body, but also the greater run-up height 
in the dam abutments. In order to prevent dam overtopping, the reservoir level must be 
lowered a further 5 m, to give a total freeboard of f = 19 m. Whether overtopping will 
be avoided with the new value of f = 19 m has to be proven with a new calculation as 
well as the choice of suitable safety allowance (Section 4.7). 

The additional horizontal force component on the dam resulting from impulse wave 
is of the order of 17% of the force component due to hydrostatic pressure. However, this 
additional force only acts for a few seconds. 
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5.2 Example 2 

5.2.1 Problem description and governing parameters 

Figure 5-5 shows the reservoir geometry for example 2. An icefall threatens to impact 
into an artificial reservoir at point A. The effects on the embankment dam of the im-
pulse wave generated by the ice mass and the extent to which the reservoir should be 
drawn down to avoid dam overtopping have to be determined. On impact with the 
reservoir the icefall will have disintegrated to a granular material. The freeboard is 
f = 10 m. The reservoir sections, which are shown in Figure 5-5 as dashed lines, are 
presented in Figure 5-7. 
 

 
Figure 5-5 Reservoir geometry for example 2 with impacting icefall at point A; the reservoir is im-

pounded by an embankment dam. 

 
 

 
Figure 5-6 Parameters for the calculation of the slide impact velocity Vs. 

 
For the reservoir geometry shown in Figure 5-5 the dam is not visible from the im-

pact zone of the icefall. In the zone of the reservoir farthest from the dam the impulse 
waves may, however, propagate almost freely and radially (case b in Figure 3-2). There-
fore, the wave parameters for point C will be determined using the 3D equations (Sub-
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section 3.2.4.3). Between points C and D the reservoir geometry resembles that of a 
laboratory wave channel (case a in Figure 3-2). Therefore, between these two latter 
points, the analysis accounts for 2D wave decay, on the assumption that the waves will 
move parallel to the bank. This assumption is on the safe side (Subsection 5.2.3). 

Using Eq. (3.5), the slide impact velocity Vs can be calculated for a drop height of 
the centre of gravity of the slide of ∆zsc = 110 m, a dynamic bed friction angle of 
δ = 20° and a hill slope angle of α = 35°, as 
 

)cottan1(2 αδ−∆= scs zgV  Eq. (3.5) 

=°°−⋅⋅= )35cot20tan1(11081.92sV 32.2 m/s. 
 
The slide impact velocity Vs as well as all the other governing parameters such as those 
for wave generation and for the determination of the effects on the embankment dam 
and on the reservoir shore, are given in Table 5-9. The parameter b indicates the mean 
slide width and s the mean slide thickness, both in the impact zone. The bulk slide 
density ρs and the bulk slide volume Vs are also relative to the impact zone (Subsec-
tion 3.2.2). The governing still water depth h lies on the slide axis (γ = 0°; Figure 3-3b). 
 
 

 
Figure 5-7 Sections for example 2, according to Figure 5-5: (a) section A-B with icefall and still water 

depth h = 100 m on the slide axis, (b) section A-C and (c) section C-D; the dashed lines in-
dicate the idealised geometries for Step 1. 
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Table 5-9 Governing parameters for impulse wave generation, the effects on the opposite reservoir 
shore and on the embankment dam. 

 

5.2.2 Step 1 

Step 1 will now be carried out according to Figure 3-1. Firstly, the wave parameters for 
point C are calculated using the 3D equations given in Subsection 3.2.4.3. Then their 
variation between C and D is determined with the 2D decay terms, as given in Subsec-
tion 3.2.4.2. This calculation proceeds in the following partial steps: 
 
a) Dimensionless parameters and limitations check on the calculation of the wave gen-
eration and propagation 
The dimensionless parameters relevant for wave generation are given in Table 5-10. 
 

Table 5-10 Dimensionless parameters and limitations check for the calculation of wave generation and 
propagation. 

Term Dimensionless parameter Range Satisfied? 

Slide Froude number F = 32/(9.81·100)0.5 = 1.02 0.40 ≤ F ≤ 3.40 Yes 
Relative slide thickness S = 40/100 = 0.40 0.15 ≤ S ≤ 0.60 Yes 
Relative slide density D = 500/1,000 = 0.50 (0.59 ≤ D ≤ 1.72) No 
Relative slide volume V = 600,000/(120·1002) = 0.50 0.187 ≤ V ≤ 0.750 Yes 
Relative Slide mass M = 500·600,000/(1000·120·1002) = 0.25 0.25 ≤ M ≤ 1.00 Yes 
Bulk slide porosity n = 45% (30.7 ≤ n ≤ 43.3) No 
Relative slide width B = 120/100 = 1.20 0.83 ≤ B ≤ 5.00 Yes 
Slide impact angle α = 35° 30° ≤ α ≤ 90° Yes 
Impulse product parameter P = 1.02·0.400.5·0.250.25·cos[6/7(35°)]0.5 = 0.43 0.13 ≤ P ≤ 2.08 Yes 
Relative radial distance (A-B) r/h = 730/100 = 7.3 1 ≤ r/h ≤ 16 Yes 
Relative radial distance (A-C) r/h = 1,100/100 = 11 1 ≤ r/h ≤ 16 Yes 
Relative radial distance (A-D) r/h = (1,100 + 1,550)/100 = 26.5 1 ≤ r/h ≤ 16 No 
Wave propagation angle (A-B) γ = 0° −90° ≤ γ ≤ 90° Yes 
Wave propagation angle (A-C) γ = 80° −90° ≤ γ ≤ 90° Yes 
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Therefore, all limitations for wave generation are satisfied, with the exception of the 
bulk slide porosity n = 45% and the relative slide density D = 0.50. The consequences 
of this will be discussed in Subsection 5.2.3, where Step 2 is described. To verify the 
wave propagation limitations on the relative distance r/h between points A and D, the 
distances A-C and C-D were added in Table 5-9. The distance A-D exceeds the limita-
tion for 3D wave propagation. However, it is within the limitation for 2D (Table 3-2). 
 
b) Calculation of wave generation and propagation 
Of primary interest for this calculation are the wave amplitudes ac1 and ac2. These wave 
characteristics will be determined at points B and C using the 3D method, as per Sub-
section 3.2.4.3. The impact radius r0,0° and r0,90° as well as the initial wave amplitudes 
a0,c1, a0,t1 and a0,c2 are similar for both sections A-B and A-C and are determined as 
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Section A-B 
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As ac2 > ac1, the decay of the wave amplitude ac2 = 2.2 m from point C to the embank-
ment dam at point D will be determined using the 2D decay terms. According to 
Eq. (3.19), an impulse wave is attenuated in the wave channel (Figure 3-2a) in propor-
tion to (x/h)−

 
4/15 (Figure 3-3a). The wave parameters at the dam are given by: 

 
Section C-D 

 
4/15

2 ( )~ca x X −   after Eq. (3.19) 
ac2 = 2.2(1,550/100)−4/15 = 1.1 m 

 
The wave crest amplitude ac2 = 1.1 m is therefore governing for the determination of the 
run-up height R on the slope of the embankment dam. 
 

How long does it take for the first impulse wave to reach the opposite shore of the 
reservoir or the embankment dam? To determine the travel time of the first wave be-
tween the points A and B and between A and D (Figure 5-5), the first wave crest celeri-
ty cc1 has to be known, which is determined with  
 

1 1( *, ) 0.95 ( )c cc r g h aγ = +  Eq. (3.32) 
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Equation (3.32) yields the instantaneous wave crest celerity at a specific location (r*, γ). 
To estimate the travel time, a mean celerity for the overall propagation distance is ap-
proximated. With a0,c1 = 14.4 m and ac1(730 m, 0°) = 2.8 m, the mean first wave crest 
amplitude for section A-B is ac1,m = (14.4 + 2.8)/2 = 8.6 m. With a still water depth h 
= 100 m (Figure 5-7a), the mean wave crest celerity is 
 

1, 1,0.95 ( )c m c mc g h a= +   

1, 0.95 9.81(100 8.6) 31c mc = + = m/s 
 

The impulse wave covers the distance r = 730 m to the shore in roughly 
r/c = 730/31 = 24 s.  

For section A-C with γ = 80°, the wave amplitude ac1 at r0 needs to be computed. 
For r* = 0, the exponential terms in Eq. (3.29) equal 1 and the equation may be simpli-
fied to 
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With a mean still water depth hm = (100 + 150)/2 = 125 m (Figure 5-7a) and a mean 
wave amplitude ac1,m = (2.2 + 0.5)/2 = 1.4 m between point A and D, the mean wave 
celerity is 
 

1, 1,0.95 ( )c m m c mc g h a= +   

1, 0.95 9.81(125 1.4) 33.5c mc = + = m/s 

 
The impulse wave takes about r/c = (1,100 + 1,550)/33.5 = 79 s to travel the 2650 m 
from the impact location (point A) to the dam (point D).  
 

c) Wave run-up including limitations check 
With help of the wave parameters calculated in b), the dimensionless parameters for the 
arch dam as well as the run-up height R (Eq. 3.36) may be calculated. For both sections, 
the second wave crest amplitudes ac2 are larger and are therefore considered for the 
estimation of R. As distinct from the case when waves run-up smooth and impermeable 
dams, the neglected governing parameters in Eq. (3.36), i.e. the permeability and rough-
ness of the shore, may be relevant as they attenuate the run-up height R. The value 
obtained with Eq. (3.36) for point B at the shore thus tends to over-estimate the run-up 
height R observed in reality. In Tables 5-11 and 5-12 compliance with the limiting 
parameters is verified and then the run-up height R is computed. To check the non-
linearity limitation, the wave height H is approximated with H = ac2 + at1. 
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Point B 
 

The wave crest amplitude ac2 = 1.1 m is relevant for the determination of the run-up 
height R on the slope of the embankment dam at point D. 
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Table 5-11 Dimensionless parameters and limitations check for the calculation of wave run-up at 
point B. 

Term Dimensionless parameter Range Satisfied? 

Relative wave crest amplitude ε = ac2/h = 7.4/60 = 0.12 0.007 ≤ ε ≤ 0.69 Yes 
Non-linearity ac2/H = 7.4/(7.4+5.6) = 0.57 0.57 ≤ a/H ≤ 1.04 Yes 
Run-up angle β = 35° 10° ≤ β ≤ 90° Yes 
Slope parameter So = 1.521(tan 35°/ 0.120.5) = 3.1 So ≥ 0.37 Yes 

 
 

Point D 
 
 

The wave crest amplitude ac2 = 1.1 m is governing for the determination of the run-up 
height R on the slope of the embankment dam at point D. 
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To check the limitation of non-linearity a/H, the first wave trough amplitude at1 at point 
D is determined: 
 

4/15
1( )~ta x X −   after Eq. (3.19) 

at1 = 0.9(1,550/100)−4/15 = 0.4 m 
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Table 5-12 Dimensionless parameters and limitations check for the calculation of wave run-up at 
point D. 

Term Dimensionless parameter Range Satisfied? 

Relative wave crest amplitude ε = ac2/h = 1.1/150 = 0.007 0.007 ≤ ε ≤ 0.69 Yes 
Non-linearity ac2/H = 1.1/(1.1+0.4) = 0.73 0.57 ≤ a/H ≤ 1.04 Yes 
Run-up angle β = 40° 10° ≤ β ≤ 90° Yes 
Slope parameter So = 1.521(tan 45°/ 0.0070.5) = 15 So ≥ 0.37 Yes 

 
d) Wave overtopping 
As the dam freeboard f = 10 m at point D is greater than the wave run-up height 
R = 2.5 m, the situation analysed in Step 1 does not result in overtopping. Evaluation of 
Step 2 has still to be considered (Subsection 5.2.3). 
 
e) Force effect on the embankment dam 
The total horizontal force component at point C with ε = a/h = 0.11 is 
 

[ ] 1/6, 1 1.5( / ) ,tot h hs hF a h F= −    Eq. (3.54) 

Ftot,h = [1 − 1.5(1.1/150)]1/6(1/2)1,000∙9.81(2∙1.1 + 150)2 = 113∙106 N/m. 
 

The elevation zK,tot,h of Ftot,h is (2a + h)/3 = (2∙1.1 + 150)/3 = 50.7 m. 
 
If Ftot,h is reduced by the horizontal force component FRW,h resulting from hydrostatic 
pressure then the additional horizontal force component resulting only from the impulse 
wave is obtained as 
 

, , ,h tot h RW h tot hF F F F∆ = − =  − 2 / 2wghρ   Eq. (3.54) − Eq. (3.52) 

∆Fh = 113∙106 – 1,000∙9.81∙1502/2 = 3.1∙106 N/m. 
 

The additional horizontal force component ∆Fh resulting only from the impulse wave is 
relative to the hydrostatic effect 3.1∙106/[1,000∙9.81∙1502/2] = 3%. This additional im-
pulse wave force component acts on the embankment dam for only a short time, typical-
ly for a few seconds.  
 
The upstream dam face is inclined at an angle of β = 40°. The forces computed thus far 
describe the horizontal force components when β = 90°, but they do not change if 
β < 90°. However, an additional total vertical force component Ftot,v also acts on the 
inclined dam face (Subsection 3.5.2). This component can be determined for the effects 
of the impulse wave including hydrostatic pressure as 
 

, , / tantot v tot hF F β=  after Eq. (3.53) 
Ftot,v  = 113∙106/tan40° = 135∙106 N/m. 
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5.2.3 Step 2 

The deviations determined in this subsection, which refer to the wave amplitude a, will 
be applied unchanged to the run-up height R. The following phenomena may lead to 
deviations as compared with Step 1 as shown in Figure 3-1: 
 

• Exceeding of the limitations 
• Volumetric displacement due to icefall 
• Shoaling 
• Reflection 
• Constriction of the radial wave propagation and at the dam abutments 

 
The following limitations are not satisfied: bulk slide porosity n = 45% 

(30.7% ≤ n ≤ 43.3%), bulk slide density ρs = 500 kg/m3 (590  kg/m3 ≤ ρs ≤ 1,720 kg/m3) 
and propagation distance A-D  r/h = 26.5 (1 ≤ r/h ≤ 16). These will increase the uncer-
tainty of the results. 

The water level increase, as a result of the volumetric displacement by the icefall, 
for the reservoir surface area of 2.5∙106 m2 (Figure 5-5) and for a bulk slide volume of 
Vs = 600,000 m3, is 600,000/2.5∙106 = 0.24 m. Considering a value of bulk slide porosi-
ty of n = 45% and the grain density ρg = 900 kg/m3 (i.e. < 1,000 kg/m3) the reservoir 
surface rise would be even less. For this reason, volumetric displacement may be ne-
glected.  

A further effect is shoaling (Section 4.2). The impulse waves approaching the dam 
will be partly influenced by the reservoir bed. The still water depth of h = 100 m used in 
Step 1 is constant up to the embankment dam, as shown by the dashed lines in Figure 
5-7(b) and (c). As some of the wave energy is used to bring into motion the 50 m water 
column below the dashed line in Figure 5-7(c), the wave amplitude a at point D will be 
smaller than that calculated in Step 1. This effect may be calculated according to 
Green’s law using Eq. (4.1). In doing this, values with the index 1 are denominated as 
idealised geometry with h = 100 m = constant, whilst the index 2 denotes the condition 
with change from h = 100 m to h = 150 m (Figure 5-7). As the widths b1 = b2 are for 
both cases identical, the new wave crest amplitude a2 at point D may be determined as 
 

1/4

2 1

1 2

a h
a h

 
=  
 

 for b1 = b2  after Eq. (4.1) 

1/4 1/4
1

2 1
2

1001.1
150

ha a
h

   = =   
  

 = 1.0 m. 

 
This corresponds to a reduction from 1.1 m to 1.0 m, or about 10% compared with 
Step 1. 
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Next, possible reflections are discussed. If a wave encounters an obstruction the an-
gle of incidence is equal to the angle of reflection (Figure 5-8). The reflection of the 
largest waves on the slide axis is not relevant for the dam, as they remain in the far end 
of the reservoir. The governing reflection is shown in Figure 5-8. From the calculation 
in Step 1 (Subsection 5.2.2) the wave movement from point C was assumed parallel to 
the shore line, in order to minimise the distance and remain on the safe side. In reality, 
the impulse waves follow a polygonal zig-zag course. The distance will thus be about 
2,200 m, i.e. longer than the straight-line distance of x = 1,550 m between C and D 
(Table 5-9). In addition, at every reflection, the waves decrease in height (Section 4.2). 
From ac2 = 2.2 m at point C, the second wave crest amplitude decreases to less than 
1.1 m at point D. 

A final effect is constriction. The free, radial wave propagation on section A-C is to 
a large extent fulfilled. Only in the last portion is it somewhat restricted (Figure 5-5). At 
the dam abutments, the constriction may lead to an increase of the run-up height by 
about 20-30%, compared with the values calculated in Step 1 for the centre of the em-
bankment dam (Subsection 4.2.2). 
 

 
Figure 5-8 Wave reflection at point B has no consequences for the embankment dam. The wave propa-

gating towards point C reaches the embankment dam. Angles of incidence and reflection at 
the run-up points are in each case the same. 

 
In summary, the phenomena of shoaling leads to a slight decrease (≈ −10%), the 

longer distance and the two reflections to a clear reduction of the wave height and the 
constriction to an increase (≈ +20-30%) of the wave and run-up heights. These increases 
and decreases in Step 2 are more or less balanced. The freeboard of f = 10 m is suffi-
cient to ensure that, with a run-up height R = 2.6 m, any overtopping is prevented. 
 

5.2.4 Conclusions 

In order to assess the effects of an impulse wave in a reservoir of the geometry shown in 
Figure 5-5, a computation in proximity of the impact zone, as far as point B on the 
opposite shore as well as to point C, is made by the 3D method. Between Points C and 
D the reservoir geometry resembles the geometry of a wave channel (Figure 5-5). 
Changes of the wave parameters between C and D were thus determined with the 2D 
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decay terms. According to Step 1, this method gives a run-up height of R = 2.6 m on the 
embankment dam. Use of Step 2, shown in Figure 3-1, may change this result slightly, 
as the deviations from the idealised conditions of Step 1 effect the run-up height R in 
both positive and negative senses. The available freeboard of f = 10 m is sufficient to 
prevent overtopping. The additional horizontal force component due to impulse wave 
acting on the dam is only about 3% of the force component resulting from hydrostatic 
pressure.
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5.3 Example 3  

The seven steps for estimating wave amplitudes and heights in intermediate water body 
geometries between 2D and 3D (Subsection 4.2.1) are illustrated with the 2014 Lake 
Askja case where a subaerial landslide generated impulse wave reached a runup height 
of 71 m. This case was numerically simulated by Gylfadóttir et al. (2017). The estima-
tion of slide parameters is addressed in Chapter 3 such that the parameters from Ruffini 
et al. (2019) are taken over without derivation: b = 550.0 m, s = 35.5 m, α = 10.4°, Vs = 
30.1 m/s, ms = 2 × 1010 kg, ρs = 2000 kg/m3, ρw = 1000 kg/m3 and h = 138.0 m (step 1).  

The wave type product T = S1/3M cos(6/7α) specifies the impulse wave type in 2D 
(Heller and Hager 2011). The given slide parameters S = 0.26, M = 1.91 and F = 0.82 
result in T = 1.21, 4/5F−7/5 = 1.06 and 11F−5/2 = 18.06, corresponding to a cnoidal- or 
solitary-like wave because 1.06 ≤ T = 1.21 ≤ 18.06 (Table 4-1). The former is selected 
as T is closer to the lower than the upper boundary such that β = 1.03 (step 2). The 
impulse product parameter P is 

 
[ ]{ } 2/14/12/1 )7/6(cos αMSFP =   Eq. (3.12) 

P = 0.82·0.261/2·1.911/4{cos[(6/7)10.4]}1/2 = 0.49. 
 

Equations (3.13) and (3.14) result in (step 3) 
 

hH M
5/4)9/5( P=  = (5/9)0.494/5138 = 43.3 m Eq. (3.13) 

( ) hxM
2/12/11 P=  = (11/2)0.491/2138 = 531 m. Eq. (3.14) 

 
The maximum wave height HM = 43.3 m predicted with the 2D approach is therefore 
observed at xM = 531 m. The slide width  at the coupling location is approximated with 
the slide width  from the impact zone plus an arc section on either side of the slide 
(Figure 5-9). This approximation satisfies the energy flux conservation between lw(r’ = 
0, θ) and lw(r’, θ), which coincides with the assumptions made for Green’s law. Figure 
5-9 illustrates the choice of the reservoir side angle θ1 = 32.4° and θ2 = 44.1° for the 
unsymmetrical Lake Askja. Note that r’ in Eq. (4.2) is replaced with r in this step be-
cause the geometry already starts to diverge at r = 0 rather than at r’ = 0. This results in 

 
( ), 2w radl r b rθ θ= +  after Eq. (4.2) 

lw(r = xM, θ) = 550 + 531(32.4/180·π + 44.1/180·π) = 1259 m  
 
at the coupling location (step 4).  
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Figure 5-9 Illustration of the steps to compute the wave height at g9 with Eq. (4.3) for the 2014 Lake 

Askja event (Ruffini et al. 2019). 

 
The value for HM applies to 2D and given that the wave energy is spread over lw ra-

ther than b, the wave height is reduced accordingly as (step 5) 
 

H(r’ = 0, γ' = 0°, θ) = HM(r’ = 0, γ’ = 0°, θ = 0°)(b/lw(r’ = 0, θ))1/2  
= 43.3(550/1259)1/2 = 28.6 m.  

 
The wave height is calculated at wave probe g9 in Figure 5-9 at r = 1970 m and γ = 0° 
relative to the slide impact zone. The corresponding reservoir side angles are θ3 = 19.2° 
and θ4 = 44.1° resulting in (step 6) (Figure 5-9) 
 

( ), 2w radl r b rθ θ= + .  after Eq. (4.2) 

lw(r = 1970, θ) = 550 + 1970(19.2/180·π + 44.1/180·π) = 2726 m  
 
Note that this step takes the small island on the left-hand-side of the slide into account 
which essentially restricts wave energy spread at this location. Finally, applying Eq. 
(4.3) with the pre-factor β = 1.03 for cnoidal waves results in (step 7) 
 

( )
2

1/2
( , , ) / ( 0, 0 , ) cos

3/ ( , )w

H r' ' h H r' ' '
hb' l r'

γ θ γ θ γβ
θ

= = °  =  
 

 Eq. (4.3) 

 
H(r’ = 1439 m, γ = 0°, θ) = 1.03·28.6(1258/2725)1/2 = 20.0 m.  

 
The wave height H = 20.0 m is close to the wave height H = 22.2 m found in the 
numerical simulations of Gylfadóttir et al. (2017).  

It is emphasised that the method of Ruffini et al. (2019) excludes frequency disper-
sion and therefore likely overpredicts wave magnitudes in general and operates on the 
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save side (Subsection 4.2.1). This is in contrast to this example where the numerical 
value is 11% larger. However, it is unknown how well the numerical value represents 
the wave height in nature at the location of wave probe g9. 
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5.4 Example 4  

The following example focuses on a comparison of phenomena that influence the trig-
gering and acceleration of a landslide before it enters into the reservoir. Therefore, an 
idealised landslide reservoir geometry is chosen that allows estimating the impulse 
wave using the 2D procedure. 
 

 
Figure 5-10 Geometry of the potential landslide and the reservoir. 

 
In this example, the far end slope of a reservoir is assumed to be instable (Figure 

5-10). This slope is composed of a coarser soil mass deposited on a weaker interlayer. 
This kind of situation can be found e.g. where an ancient landslide has been deposited 
on top of a finer grained slope potentially trapping also the organic surface layer of the 
pre-existing slope. The weak interlayer consists of a clayey silt with organic and peaty 
fractions and has to be assumed to act as a preferential slip surface in case of an 
instability. The water table is slightly above the weak layer inside the landslide deposit. 
Therefore, the weak interlayer is fully saturated. The potentially instable mass shows 
signs of movement, such as sagging and tension cracks. Therefore, it may be assumed 
that the static factor of safety of that mass is close to unity. 

 

Table 5-13 Geometry and geotechnical parameters of the potential instability and the reservoir. 
Slope Symbol Unit Value Reservoir Symbol Unit Value 
Slide length ls [m] 200 Width b [m] 150 
Slide width  b [m] 150 Distance to dam x [m] 1,200 
Slide thickness (initial) hs [m] 20 Still water depth (slide) h [m] 50 
Volume V [m3] 600,000 Still water depth (dam) h [m] 50 
Inclination / slide impact angle  α [°] 30 Run-up angle β [°] 70 
Bulk slide density ρs [kg/m3] 1,700 Freeboard f [m] 10 
Bulk slide porosity n [%] 35 Dam crest width bK [m] 10 

 
The reservoir is situated in an area of substantial seismic risk; therefore, there is the 

danger of the slope failing during an earthquake. Table 5-13 summarises the parameters 
of the slope and reservoir. The slope is assumed to fail as a slab. 
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Figure 5-11 (a) Idealised results of drained and undrained stress paths on the presumed plane of failure 

in simple shear conditions and (b) comparison of idealised undrained stress paths on the pre-
sumed plane of failure for simple shear conditions with and without initial static shear 
stress. 

Figure 5-11(a) shows example tests of idealised experimentally derived stress paths 
(drained and undrained) representative for silty and clayey materials as in the weak 
layer. Three different possible experimental results for undrained stress paths are 
shown: 
 
• Test 1: Initially there is an increase of mobilised shear strength whilst the material 

shows contractive behaviour causing excess pore pressures to develop, therefore 
the stress path curves to the left. After reaching the undrained peak strength, the 
material softens and reaches failure (constant volume) at a lower shear resistance 
than the peak. 
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• Test 2: Similar to example Test 1 but the material mobilises shear resistance and 
develops excess pore pressure until it reaches the failure envelope and no more 
volume change takes place, i.e. the material deforms at constant stress. 

• Test 3: The material mobilises shear strength and produces excess pore pressure 
until it reaches a second phase transformation point where the material behaviour 
becomes dilative causing the curvature of the stress path to reverse. 

 
Note that the initial stress state for all three example tests of Figure 5-11(a) does not 
consider a static shear stress which is the case in sloping ground. However, these stress 
paths are considered to be typical results for many experimental investigations. Figure 
5-11(b) shows a potential comparison between Test 2 in Figure 5-11(a) and the same 
material taking into account sloping ground i.e. a static shear stress.  

It has to be mentioned that these example tests are meant to show phenomenologi-
cal examples of typical stress paths that can be observed in laboratory tests, but experi-
ments may also produce different paths depending on the material properties. Particular-
ly, the effect of static shear stress is not easy to evaluate and requires further research. 

Table 5-14 shows the results of the calculation in terms of impact velocity and 
wave height. μ(δ’) is the static or dynamic drained friction in terms of friction ratio or 
friction angle (in brackets). su/ 0σ ′  and Δu/ 0σ ′  are the normalised ultimate undrained 
strength and excess pore pressure respectively as it could be derived from experiments 
for the three example tests assumed (Figure 5-11a).  

Therefore, the excess pore pressure developing in the weak saturated layer is de-
rived via the initial effective normal stress in the weak layer before onset of the seismic 
event 0, fieldσ ′  

 

( )0, ,0 cosfield s s w wh g h gσ ρ ρ α′ = −  

 

0, 0,

fieldtest
field

test field

uu u
σ σ

∆∆
= → ∆

′ ′
. 

 
The initial water table is observed about 1 m above the weak layer: hw,0 ≈1 m. σ ′  is the 
effective normal stress acting on the presumed plane of sliding in the weak layer once 
excess pore pressure has built  
 

( )( )0, ,0 , cosfield field s s w w u wu h g h h gσ σ ρ ρ α∆′ ′= − ∆ = − +               with , cos
field

w u
w

u
h

gρ α∆

∆
= . 

 
τs and τr are the downslope acting shear stress and the shear resistance along a plane of 
sliding 
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sins s sh gτ ρ α=  
 

tanr 'τ σ µ σ δ′ ′= = . 
 
FS is the resulting factor of safety of the slide  
 

FS r

s

τ
τ

= . 

 
Fs and Fr are driving and resisting forces 
 

sins s s sF m l bα τ= =  
 

( ) cos tanr s w r sF m m g ' l bα δ τ= − = , 

 
with s s s sm l h b gρ=  and ( ),0 ,w s w w u wm l b h h ρ∆= + . 

 
If the driving forces exceed the resisting ones, the unbalance in force produces the 
acceleration as and subsequently the impact velocity Vs 
 

s r
s

s

F Fa
m
−

=  

2
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s s

s

zV a
a α
∆

=  

 
Following Subsection 3.2.4.2, the resulting maximum wave height HM, maximum wave 
amplitude aM, run up height R, and wave amplitude a for the 2D case can be derived 
(with slide thickness s = hs). Table 5-14 contains the numeric results of the calculation. 
Note that low undrained strength can lead to significant acceleration also for milder 
slopes. For example, by assuming a slope with inclination of only 21° and material with 
undrained strength according to the experimental example tests above, the decrease in 
slope angle from 30° to 21° causes 

 
• for the strength parameters of Test 1 a drop in velocity from 25.1 m/s to 17.8 m/s 

(ΔVs/Vs,α=30° = 29%), 
• for the strength parameters of Test 2 a drop in velocity from 23.7 m/s to 15.7 m/s 

(ΔVs/Vs,α=30° = 34%) and 
• for the strength parameters of Test 3 a drop in velocity from 19.9 m/s to  

8.02 m/s (ΔVs/Vs,α=30° = 59%). 
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Table 5-14 Input parameters (rows 1-3) and calculation results for different strength assumptions. 
 Drained strength 

(static friction) 
Undrained 

strength (Test 1) 
Undrained 

strength (Test 2) 
Undrained 

strength (Test 3) 
Experimental results (strength properties assumed) 
μ (δ’) [-] ([°]) 0.675 (34°) 0.675 (34°) 0.675 (34°) 0.675 (34°) 
su/σ0’ [-] - 0.22 0.26 0.36 
Δu/σ0’ [kPa] - 0.67 0.61 0.47 
Results of the analysis 
σ0’ [kPa] 286 286 286 286 
τs [kPa] 170 170 170 170 
τr [kPa] 192 62 74 103 
FS [-] 1.19 0.37 0.44 0.61 
Fs [MN] 5.1 5.1 5.1 5.1 
Fr [MN] 5.8 2.5 3.0 4.1 
as [m/s2] - 3.15 2.81 1.97 
Vs [m/s] - 25.1 23.7 19.9 
HM (Eq. 3.13)  [m] - 24.9 23.8 20.7 
aM (Eq. 3.16) [m] - 19.9 19.1 16.6 
a [m]  11.5 (> f = 10 m) 11.0 (> f = 10 m) 9.6 (< f = 10 m) 
R [m] - 26.6 25.3 21.8 

 
Undrained failure is usually triggered by a fast loading event such as an earthquake. 

A simple approach to investigate the effect of seismic loading in terms of earthquake-
induced displacements is the Newark’s sliding block approach (Newmark 1965). How-
ever, if the residual factor of safety of the sliding mass drops to a value below unity 
during cyclic loading, due to development of excess pore pressures, Newark’s sliding 
block algorithm cannot readily be applied but the dynamic equilibrium needs to be 
solved.    

Assuming the ultimate undrained strength from example Test 2 (Figure 5-11) and a 
slope-parallel input motion given in Figure 5-12(a), the velocity and displacement of the 
sliding mass depending on the development of excess pore pressure can be derived. 
Figure 5-12(b, c) show the velocity and displacement time history according to New-
ark’s sliding block model. In addition, it shows the effect of different durations of pore 
pressure build-up expressed as reduction of the safety factor (red lines in Figure 5-12a): 
 
• Case 1: immediate drop of resistance i.e. full development of excess pore pressure 

at onset of strong shaking;  
• Case 2: linear drop of resistance, i.e. development of excess pore pressure over the 

duration of strong shaking; 
• Case 3: partial drop of resistance, i.e. development of excess pore pressure over the 

duration of strong shaking, however sufficient loss of resistance to cause unbalanc-
ing of the slope.  

 
Whilst for an immediate drop in safety factor (Case 1) the sliding body impacts into 

the lake during the seismic event (travel distance: d = zsc/sinα = 100 m), slower genera-
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tion of the excess pore pressure such as in Case 2 causes the landslide to stay in motion 
after the end of the earthquake. Even if the pore pressure generation is not finished 
before the end of the earthquake, it can be assumed that subsequent fast shearing will 
sustain the generation of excess pore pressure until the ultimate strength is reached 
(Case 3). Note that the impact velocity is not sensitive to the duration necessary to cause 
excess pore pressure to develop fully. Consequently, as long as sufficient pore pressure 
is generated to cause instability of the slope, subsequent fast shearing causes pore pres-
sures to increase further and thus strength to drop to its residual level resulting in similar 
impact velocities.  
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Figure 5-12 (a) Input motion and change in safety factor due to development of excess pore pressure, (b) 

development of slide velocity and (c) travelled distance of the slide. 
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5.5 Computational tool 

5.5.1 Introduction 

In this section the application of the computational tool, which can be downloaded in its 
latest version from https://doi.org/10.5281/zenodo.3491999, is explained. With this tool, 
the effects of impulse waves on both dams and shores can be evaluated. The spreadsheet 
facilitates Step 1 of the computational procedure (Chapter 3) but Step 2 must be carried 
out afterwards, without the computational tool, as described in Chapter 4. 

The computational tool was created with the proprietary spreadsheet application Mi-
crosoft Excel 2016. Nevertheless, it is also executable with the open source spreadsheet 
application LibreOffice Calc (compatibility tested with version 6.1). The file includes 
macros, i.e. programs containing a pre-defined sequence of instructions, actions or key 
combinations. However, these macros have no effect on the computational procedure, 
since they are only applied to conveniently clear all input cells within a sheet at once. 
Therefore, the computational tool also runs without activated macros. 

5.5.2 Structure 

The spreadsheet file contains six sheets. A sheet can be selected by clicking on the sheet 
name in the lower, left-hand corner of the screen. The most important functions of the 
sheets are now explained. The names of the sheets are: 
 

a) START 
b) Generation | Propagation (2D) 
c) Generation | Propagation (3D) 
d) Run-up | Overtopping 
e) Overland flow 
f) Wave force 

 
a) START 
 
This first sheet provides an overview of the subsequent computation sheets. The 
‘Project’ text box on the upper left allows for inserting a project title, which is cop-
ied to the computation sheets. The definition sketch illustrates the two different 
wave generation and propagation processes available in the sheets ‘Generation | 
Propagation (2D)’ and ‘Generation | Propagation (3D)’. At the bottom, the colour 
coding is shown. Orange text boxes require the insertion of a text string, a parameter 
value, or the choice from a drop-down menu. Green and red shaded cells refer to the 
limitations, i.e. experimental parameter ranges, of the applied equations. The limita-
tion cells are shaded green, when the respective parameter is within its limitations, 
while it is shaded red when there is no value or the limitation range is exceeded. 
 

https://doi.org/10.5281/zenodo.3491999


5 Computational examples 

115 

b) Generation | Propagation (2D) 
 
The second sheet computes wave magnitudes based on governing slide parameters 
for the extreme case 2D. At the top the project title is copied from the ‘START’ 
sheet. The orange shaded text boxes allow for inserting the governing parameters for 
wave generation and propagation. The ‘Clear’ button deletes all parameter entries, if 
macros are enabled. The main results are provided at the lower left, while the limita-
tions are given on the right. 
 
c) Generation | Propagation (3D) 
 
The third sheet computes wave magnitudes based on governing slide parameters for 
the extreme case 3D. At the top the project title is copied from the ‘START’ sheet. 
The orange shaded text boxes allow for inserting the governing parameters for wave 
generation and propagation. The ‘Clear’ button deletes all parameter entries, if 
macros are enabled. The main results are provided at the lower left, while the 
limitations are given on the right. 
 
d) Run-up | Overtopping 
 
The fourth sheet computes wave run-up and overtopping based on shore and dam 
parameters as well as wave parameters either for 2D or 3D. At the top the project ti-
tle is copied from the ‘START’ sheet. The 2D or 3D wave parameters are copied 
from the sheets ‘Generation | Propagation (2D)’ or ‘Generation | Propagation (3D)’ 
completed before. The input source is selected via a dropdown menu on the right of 
the orange text box. For 3D wave input parameters, the higher wave crest amplitude 
is automatically selected. The additional orange shaded text boxes allow for insert-
ing the governing parameters for wave run-up and overtopping. The ‘Clear’ button 
deletes all parameter entries, if macros are enabled. The main results are provided at 
the lower left, while the limitations are given on the right. Note, this sheet also in-
cludes the equations for overtopping at granular dams from Appendix A. However, 
these equations are not part of the main computational procedure of Step 1. 
 
e) Overland flow 
 
The fifth sheet computes overland flow characteristics based on shore parameters as 
well as wave parameters either for 2D or 3D. At the top the project title is copied 
from the ‘START’ sheet. The 2D or 3D wave parameters are copied from the sheets 
‘Generation | Propagation (2D)’ or ‘Generation | Propagation (3D)’ completed 
before. The input source is selected via a dropdown menu on the right of the orange 
text box. For 3D wave input parameters, the higher wave crest amplitude is 
automatically selected. The additional orange shaded text boxes allow for inserting 
the governing parameters for overland flow. The ‘Clear’ button deletes all parameter 
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entries, if macros are enabled. The main results are provided at the lower left, while 
the limitations are given on the right. 
 
f) Wave force 
 
The sixth sheet computes the wave force on a dam structure based on dam 
parameters as well as wave parameters either for 2D or 3D. At the top the project 
title is copied from the ‘START’ sheet. The 2D or 3D wave parameters are copied 
from the sheets ‘Generation | Propagation (2D)’ or ‘Generation | Propagation (3D)’ 
completed before. The input source is selected via a dropdown menu on the right of 
the orange text box. For 3D wave input parameters, the higher wave crest amplitude 
is automatically selected. The additional orange shaded text boxes allow for 
inserting the governing parameters for the wave force. The ‘Clear’ button deletes all 
parameter entries, if macros are enabled. The main results are provided at the lower 
left, while the limitations are given on the right. 

5.5.3 Application 

The four sheets of the computational tool should be used in the order described below. 
The required sheet can be selected by clicking on to the corresponding sheet tab on the 
lower left of the window. Input cells for calculations are highlighted in orange. There is 
no access to any other cells. The computation takes place in the following four steps. 
The name of each corresponding sheet is thereby given in brackets. 
 

(i) Input of project name (‘START’). 
 
(ii) Decision whether 2D or 3D impulse wave generation and propagation pro-

cesses have to be followed. Input of governing parameters for 2D (‘Genera-
tion | Propagation (2D)’) or 3D (‘Generation | Propagation (3D)’). All input 
text boxes have to be filled out to compute the wave characteristics at a spe-
cific location within the water body (coordinates: x for 2D, r and γ for 3D). 

 
(iii) Computation of the wave shore- or wave structure-interaction is conducted 

with the three following sheets for wave run-up and overtopping (‘Run-up | 
Overtopping’), overland flow on a horizontal hinterland (‘Overland flow’), 
and wave forces acting on a dam structure (‘Wave force’). For all processes, 
the wave input parameters are selected from the wave generation and propa-
gation sheets via a drop-down menu, either 2D or 3D. Since wave overtop-
ping only applies to dam structures, the freeboard f and the crest width bK 
may be omitted, if only the run-up height R is of interest.  

 
(vi) Print: all sheets may be printed via the printing function of the spreadsheet 

application.  
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Afterwards, an assessment of the effects from Step 2, as shown in Figure 3-1, has to be 
carried out without the computational tool (Chapter 4). 

5.5.4 Troubleshooting 

Table 5-15 shows possible errors which may arise by using the computational tool with 
their possible cause and ways to correct them. 
 
Table 5-15 Potential errors arising from the use of the computational tool with their causes and possibil-

ities to correct them. 

Error Cause Consequences/Correction 

Nothing happens when ‘Clear’ 
button is clicked. 

Macros are disabled. Open spread sheet file and enable 
macros. 

Cell displays ‘x < x_M’ The inserted 2D wave propagation 
distance x is smaller than the streamwise 
distance of the maximum wave amplitude 
from the impact location xM. 

Check if the value for the 2D wave 
propagation distance x is correctly 
inserted. Otherwise, x is too close to 
the impact location for obtaining a 
result and no computation is possible.   

Cell displays ‘r < r_0’ The inserted 3D wave propagation 
distance r is smaller than the impact 
radius r0. 

Check if the value for the 3D wave 
propagation distance r is correctly 
inserted. Otherwise, r is too close to 
the impact location for obtaining a 
result and no computation is possible.   

Cell displays ‘ε < εmin’ The relative wave crest amplitude ε of the 
approaching wave is smaller than the 
minimum relative wave crest amplitude 
εmin to induce overland flow. 

The approaching wave amplitude a is 
too small for obtaining a result. 

Cell displays ‘2a < f’ The freeboard f is larger than twice the 
approaching wave amplitude a.  

The approaching wave amplitude a is 
too small for obtaining a result. 

Cell displays ‘no value’ No input wave parameters may be 
retrieved. 

Check the computation sheets for 
wave generation and propagation. 

Cell displays ‘#VALUE!’ or 
‘######’ 

An invalid parameter was inserted into a 
text box. 

Check if all necessary input text 
boxes feature a numeric value. Errors 
may arise from alphabetic characters 
or not supported decimal separators. 
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6 Conclusions 

In this manual the present state of practically oriented research on subaerial landslide-
generated impulse waves (Figure 1-1) is described. The most important conclusions 
may be summarised as follows: 

• Landslide-generated impulse waves occur typically in oceans, bays, lakes or
reservoirs as a result of landslides, rock falls, shore instabilities, avalanches or
glacier calvings. Various distinct theoretical wave types are considered when
describing the impulse wave spectrum (Section 2.2).

• A complete procedure (Figure 3-1) has been developed for the assessment of
the effects of landslide-generated impulse waves on dams; this takes into con-
sideration parameters such as run-up height, overtopping volume and force ef-
fect, and is based on the use of generally applicable, semi-empirical equations.

• The analysis of the wave generation, as well as wave propagation, run-up and
the overtopping of dams, considers all important governing parameters over a
wide range. However, the procedure is limited to slide volumes that are signifi-
cantly smaller than the volume of the reservoir or lake. For the cases described,
the rise of the water surface level resulting from volumetric displacement by the
slide is negligible compared with the wave height created by the slide impact.

• The user of the procedure can estimate, for example, the run-up height on the
dam face, both at little cost and in a short time (Section 1.2).

• In Step 1 of the procedure, generally applicable equations are used under
idealised conditions, principally by considering granular slide material as well
as a channel-shaped (Figure 3-2a) or a rectangular-shaped (Figure 3-2b)
reservoir with a horizontal bed.

• In the Step 2 of the procedure, the effects of deviations from the idealised con-
ditions assumed in Step 1 are discussed. These relate above all to the reservoir
shape and associated effects such as wave reflection, constriction or shoaling
(Section 4.2), as well as the mass movement as a solid body rather than as a
granular slide (Section 4.3).

• The procedure was successfully applied on hypothetical examples, as described
in Chapter 5. A computational tool facilitates Step 1, but Step 2 must be carried
out without this tool.
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• The procedure is based on laboratory test results, many of which exhibit 
significant scatter and may only be used approximately for complex reservoir 
geometries. The results have, therefore, to be considered only as estimates. 
Safety allowances must be provided; these depend on the damage potential and 
the dam type, but cannot be generally formulated (Section 4.7). More precise 
results, also for cases where the geometry is complex, may be obtained from a 
prototype-specific model test and/or numerical simulations (Section 1.2). 
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Notation 

Roman symbols 

a [m] = wave amplitude 

ac1 [m] = first wave crest amplitude (3D) 

ac2 [m] = second wave crest amplitude (3D) 

aeq [m/s2] = earthquake induced acceleration 

aM [m] = maximum wave amplitude 

aMb [m] = maximum wave amplitude as result of a solid body 

aR [m] = wave amplitude of a reflected wave 

as [m/s2] = slide acceleration  
as,NK [m/s2] = acceleration of the slide along the slope before the point of 

slope change 

at1 [m] = first wave trough amplitude (3D) 

aw [m] = effective wave crest amplitude  
a0,c1 [m] = initial first wave crest amplitude (3D) 

a0,c2 [m] = initial second wave crest amplitude (3D) 

a0,t1 [m] = initial first wave trough amplitude (3D) 

a1 [m] = wave amplitude at cross-section 1 of Figure 4-2(b) 

a2 [m] = wave amplitude at cross-section 2 of Figure 4-2(b) 

A [-] = relative wave amplitude; A = a/h 

AM [-] = relative maximum wave amplitude; AM = aM /h 

As [m2] = area of the slip surface i.e. contact area between slide and 

stable ground  

b [m] = slide or reservoir width in the prototype; channel width in the 

model 

bK [m] = crest width 

b1 [m] = reservoir width at cross-section 1 of Figure 4-2(b) 

b2 [m] = reservoir width at cross-section 2 of Figure 4-2(b) 

B [-] = relative slide width; B = b/h 

c [m/s] = wave celerity 

cc1 [m/s] = first wave crest celerity 

cc1 [m/s] = second wave crest celerity 

d [-] = differential 

db [m] = block diameter 

dg [m], [mm] = grain diameter 
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d0 [m] = maximum (overtopping) flow depth 

D [-] = relative slide density; D = ρs /ρw 

e [-] = logarithmic constant; e ≈ 2.72 

f [m] = freeboard 

F [-] = slide Froude number; F = Vs /(gh)1/2 

Fhs,h [N/m] = horizontal component of hydrostatic force per unit length dam 

crest resulting from a still water level displaced upwards by 2a, 

according to Ramsden (1996)  

Fr [MN] = driving forces 

Fs [MN] = resisting forces  

Ftot,h [N/m] = total horizontal force component per unit length dam crest 

resulting from an impulse wave and hydrostatic pressure 

Ftot,v [N/m] = total vertical force component per unit length dam crest result-

ing from an impulse wave and hydrostatic pressure   

Ftot ,h,red [N/m] = reduced total horizontal force component per unit length dam 

crest resulting from an impulse wave and hydrostatic pressure 

Ftot ,v,red [N/m] = reduced total vertical force component per unit length dam 

crest resulting from an impulse wave and hydrostatic pressure  

FRW,h [N/m] = horizontal force component per unit length dam crest resulting 

only from hydrostatic pressure 

FRW,v [N/m] = vertical force component per unit length dam crest resulting 

only from hydrostatic pressure 

g [m/s2] = gravitational acceleration; g = 9.81 m/s2 

Gs [N] = total weight of the slide   

sG′  [N] = effective slide weight as function of pore pressure u 

h [m] = still water depth 

hs [m] = initial thickness of the slide mass 

hw [m] = initial water table thickness 

h1 [m] = still water depth at cross-section 1 of Figure 4-2(b) 

h2 [m] = still water depth at cross-section 2 of Figure 4-2(b) 

H [m] = wave height 

HM [m] = maximum wave height 

H1 [m] = wave height at cross-section 1 of Figure 4-2(b) 

H2 [m] = wave height at cross-section 2 of Figure 4-2(b) 

k [m/s] = permeability 

l [m] = coordinate along dam crest 
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ls [m] = slide length 

lF [m] = width of reservoir flank 

lK [m] = crest length 

ls [m] = slide length 

lw [m] = wave front length 

L [m] = wave length 

LM [m] = wave length of HM 

L1 [m] = first wave length (3D) 

L1 [m] = wave length at cross-section 1 of Figure 4-2(b) 

L2 [m] = wave length at cross-section 2 of Figure 4-2(b) 

mg [kg] = slide grain mass identical to slide mass; mg = ms 

ms [kg] = slide mass identical to slide grain mass; ms = mg 

M [-] = relative slide mass; M = D·V = ms /( ρw bh2) = ρsVs/( ρw  bh2) 

Ms [-] = impact angle-corrected relative slide mass 

n [%] = bulk slide porosity 

p [N/m2] = pressure on dam 

pK [N/m2] = pressure at dam crest 

P [-] = impulse product parameter; P = FS1/2M 1/4{cos[(6/7)α]}1/2 

q0 [m2/s] = maximum specific overland flow discharge 

qm [m2/s] = average discharge per unit dam crest length 

r [m] = radial distance from the impact location in the wave basin 

r’ [m] = radial distance from the coupling location 

r* [m] = surrogate radial distance from the impact location 

r0 [m] = impact radius 

r0,0° [m] = impact radius for γ = 0° 

r0,90° [m] = impact radius for γ = 90° 

R [m] = run-up height 

ReM [m] = maximum edge wave run-up height 

Rm [m] = run-up height at the dam centre 

s [m] = slide thickness 

send [m] = maximum thickness of slide deposits 

su [kPa] = undrained shear strength of the slip surface 

S [-] = relative slide thickness; S = s/h 

So [-] = slope parameter by Grilli et al. (1997) 

t [s] = time from slide impact; time 

t’ [s] = time from when the wave reaches the coupling location 

ts [s] = time of underwater slide motion 
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tO [s] = wave overtopping duration 
T [s] = wave period 

TM [s] = wave period of HM 

T1 [s] = first wave period (3D) 

u [kPa] = pore water pressure 

,f maxv  [m/s] = maximum flow front velocity at xov/w = 5 

,x maxv  [m/s] = maximum depth-averaged horizontal flow velocity at xtr 

V [-] = relative slide volume; V = Vs /(bh2) 

Vs [m/s] = slide impact velocity 

VsNK [m/s] = slide velocity at point of slope change (Figure 3-4b) 

V [m3/m] = overtopping volume per unit length dam crest 

Vg [m3] = slide grain volume 

Vs [m3] = bulk slide volume 

V0 [m3/m] = overtopping volume per unit length dam crest for f = 0 

w [m] = dam/shore height 

x [m] = streamwise coordinate in longitudinal channel direction and 

distance in 2D 

endx′  [m] = front position of slide deposits 

*
fx  [-] = relative flow front position 

xf [m] = overland flow front position measured  from the transition 

point xtr 

xM [m] = streamwise distance of the maximum wave amplitude from the 

impact location 

xov [m] = streamwise overland flow coordinate measured from the transi-

tion point xtr 

X [-] = relative streamwise distance; X = x/h 

XM [-] = relative streamwise distance of aM (or HM) from the impact 

location; XM = xM /h 

y [-] = rational number in the hyperbolic function 

z [m] = vertical coordinate 

zK,tot,h [m] = elevation of the resultant of Ftot,h 

zK,tot,h,red [m] = elevation of the resultant of Ftot,h,red 

z∆K,h [m] = elevation of the resultant of ∆Fh 

 

 



Notation 
 

131 

Greek symbols 

α [°] = slide impact angle equal to hill slope angle 

αeff [°] = effective slide impact angle; αeff = (6/7)α 

αN [°] = hill slope angle for a hill slope section (Figure 3.5) 

β [°] = run-up angle equal to dam face slope; pre-factor of Eqs. (4.3) 

and (4.4) 

γ [°] = wave propagation angle from the impact location 

γ’ [°] = wave propagation angle from the coupling location 

ε [-] = relative wave crest amplitude; ε = a/h 

εeff [-] = effective relative wave amplitude 

εmin [-] = minimum relative wave amplitude to induce overland flow 

δ [°] = dynamic bed friction angle 

δN [°] = dynamic bed friction angle for a hill slope section  

∆sc [m] = travel distance of the centre of gravity before entering the lake 

∆Fh [N/m] = additional horizontal force component per unit length dam crest 

resulting from impulse wave 

∆Fv [N/m] = additional vertical force component per unit length dam crest 

resulting from impulse wave  

∆ u [-] = excess pore pressure 

∆ x’ [-] = scatter of x’ 

∆zsc [m] = drop height of the centre of gravity of the slide 

∆zscN [m] = drop height of the centre of gravity of the slide between any 

two slide positions 

η [m] = water surface displacement 

μ [-] = static or dynamic drained friction ratio 

ω [°] = angle between the direction of the earthquake induced accelera-

tion and the slope 

π [-] = circular constant; π = 3.14 

ρg [kg/m3] = grain density 

ρs [kg/m3] = bulk slide density 

ρw [kg/m3] = water density 

σ’ [kPa] = effective normal stress 

θ [°] = water body side angle  

θrad [rad] = water body side angle in radians 

τs [kPa] = downslope acting shear stress 
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τr [kPa] = downslope acting shear resistance 

φ [°] = static or dynamic drained friction angle 

 

Subscripts 

b  = dam crest width; block 

c  = centre of gravity; centroid 

d  = dynamic 

F  = flank 

g  = grain 

h  = horizontal 

hs  = hydrostatic 

K  = crest (German Krone) 

m  = middle; averaged 

M, max  = maximum 

n  = whole number  

NK  = slope change (German Neigungsknick) 

red  = reduced  

R  = reflection 

RW  = still water (German Ruhewasser) 

s  = static; slide 

st  = stable 

tot  = total 

tr  = transition point from shore slope to horizontal overland flow 

portion 

v  = vertical 

w  = water 

1  = cross-section 1 in Figure 4-2(b) 

2  = cross-section 2 in Figure 4-2(b) 

 

Abbreviations 

comp.  = component 

cosh(y)   = hyperbolic cosine; cosh(y) = (e y + e−y )/2 

coth(y)  = hyperbolic cotangent; coth(y) = (e  y + e−y )/(e  y − e−y ) 

hor./Hor.   = horizontal/Horizontal 

p.u.l.  = per unit length 

sech( y)   = hyperbolic secant 



Notation 
 

133 

SPH  = Smoothed Particle Hydrodynamics 

tanh( y)   = hyperbolic tangent 

VAW  = Laboratory of Hydraulics, Hydrology and Glaciology 

   (German Versuchsanstalt für Wasserbau, Hydrologie und 

Glaziologie) 

Ver.  = vertical 

2D  = two-dimensional (in a wave channel or in a lake having the 

form of a wave channel) 

3D  = three-dimensional (in a wave basin or in a lake having the form 

of a wave basin) 
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Glossary 

The following definitions apply to terms used in this manual. 
 
Bore A non-linear wave type, characterised by a dominant 

peak with a steep front and gradually-falling back slope 
(Figure 2-6). Certain impulse waves or broken waves 
near the shore approximate to this type of wave. 

Breaking Unstable condition of a wave when air is entrained into 
the crest or the crest collapses forwards. This happens 
with deep-water waves when the wave steepness H/L, 
with shallow-water waves when the relative wave height 
H/h or with intermediate-water waves when both these 
parameters exceed a given limiting value. 

Capillary water wave A surface wave principally influenced by capillary 
forces; it has a wave length L < 1.7 cm. 

Cnoidal wave A theoretical, non-linear wave type; it includes both 
linear as well as solitary waves as limiting cases 
(Figure 2-4). Certain impulse waves approximate to this 
wave type. 

Coupling location Location between near and far fields to determine the 
wave parameters in intermediate geometries between 
2D and 3D. 

Dam break wave This is the gravity wave which results from the failure 
of a dam. In model tests such a wave may be simulated 
by the sudden removal of an impounding wall. 

Deep-water wave A wave which does not mobilise the water column 
down to the full depth to the bed and is therefore not in-
fluenced by this. After the linear wave theory a wave is 
classified as a deep-water wave if L/h < 2. The opposite 
is a shallow-water wave. 

Diffraction A wave moving towards and past an obstacle gives up 
some of its energy laterally into the area of the wave 
shadow (Figure 4-1a). 

Edge wave A wave propagating along the shoreline perpendicular 
to the slide direction (Figure 4-8). 
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Far field Typically, this is several wave lengths from the slide 
impact zone beyond where the generated impulse wave 
undergoes no further significant change of shape (except 
due to friction and frequency dispersion). A constant re-
lationship has established itself between kinetic and po-
tential wave energy. The opposite is the near field. 

Freeboard The distance, measured vertically, between the current 
still water level of a reservoir and the crest level of the 
dam. 

Frequency dispersion An impulse wave train typically consists of several 
waves of different frequencies (periods, lengths). The 
larger the frequency (period, length) the faster a wave 
propagates according to Eq. (2.1). As a consequence, 
the waves within an impulse wave train separate or dis-
perse such that the shape of the impulse wave train 
changes with distance from the slide impact location. 

Froude similitude The relationship of inertia to gravity forces (Froude 
number) in the model corresponds to that in the proto-
type. However, the relation of inertia to surface tension 
force (Weber number), to friction force (Reynolds num-
ber) and to compressibility force (Cauchy number) can-
not be satisfied at the same time. This leads to scale ef-
fects when the model scale is not 1:1, but these are often 
negligible. 

Generally applicable equation A generally applicable equation is one that can be ap-
plied for any slide or reservoir parameters, provided that 
the dimensionless limitations are satisfied. Such an 
equation is developed from the evaluation of the results 
of tests carried out on the basis of systematic and inde-
pendent variation of all important governing parameters. 

Geometrical similarity The similar shape of prototype and model, which differ 
only in their size; this is a basic requirement for the ex-
trapolation of model test results to the prototype. 

Granulate properties Properties related to the granular material of the slide 
mass; they are indicated with the subscript g (Vg, ρg). 

Gravity water wave A water wave that is influenced principally by gravity 
force. 
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Impulse product parameter The parameter P = FS 
1/2M 

1/4{cos[(6/7)α]}1/2, which 
contains only governing parameters, with which Heller 
(2007) and Heller and Hager (2010) describe the predic-
tion of most wave parameters such as the maximum 
amplitude, height and period, the wave volume as well 
as the wave amplitude and height decay. The parameter 
refers to the streamwise slide momentum flux compo-
nent. 

Impulse waves Individual or groups of waves generated by mass 
movements into water bodies. 

Intermediate-water wave A wave whose movement is slightly affected by the bed. 
According to the linear wave theory its relative length is 
between that of a deep and shallow-water wave 
(20 ≤ L/h ≤ 2). 

Kinetic wave energy Energy stored in the water particle movement. 

Linear wave Theoretical wave type in the form of a sine curve for 
which, in addition, H/h < 0.03 and H/L < 0.006 (Fig-
ure 2-1). 

Mass movement A pronounced mass location change at the ground sur-
face; The mass may consist of material such as rock, 
earth, ice or snow propagating e.g. as slide or fall (Sec-
tion 4.4). 

Model effect Deviation of results between a hydraulic model and the 
corresponding prototype due to a non-identical geome-
try. 

Navier-Stokes equations Differential equations describing the three velocity 
components, the density and the pressure at any point in 
a fluid (water). Analytic solutions only exist for simpli-
fied cases but, with the required effort, the equations can 
be completely solved by numerical means (Direct Nu-
merical Simulation). 

Near field Typically extending up to several wave lengths from the 
slide impact zone, this zone is where large changes in 
the form of the generated impulse wave take place. The 
potential wave energy is normally greater than the kinet-
ic energy. A constant relationship of potential to kinetic 
wave energy has not established itself. The opposite is 
far field. 
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Non-periodic wave An individual wave. 

Oscillatory wave The water particles follow elliptical paths and, over 
time, stay in the same position. There is transport of en-
ergy but not of fluid mass. 

Periodic wave A wave in a group of waves. 

Plunging breaker Form of wave breaking when the crest collapses for-
ward and, for a short time, with the wave front forms an 
“air tube”, as is often seen on photographs of surfing. 

Potential theory Mathematically idealised description of a fluid as fric-
tionless and irrotational. The streamlines in the fluid are 
so aligned that they possess a potential field. Many phe-
nomena in hydraulics are analysed using the potential 
theory, for example water waves, ground water flow or 
pipeline flow.  

Potential wave energy Energy expended in the displacement of water from its 
mean position. 

Reflection After striking the shore, a wave moves back with the 
same (total reflection) or reduced wave height. 

Refraction A wave experiences a change of direction in shallow-
water due to the shoaling effect and finally moves most-
ly frontally towards the shore. 

Run-up height The vertical distance between the still water level and 
the highest point reached by the wave during run-up. 

Scale effect Deviation of the relative results in hydraulic model 
testing from those in the prototype as a result of those 
force ratios (Weber number, Reynolds number, Cauchy 
number) which cannot be correctly represented in the 
model. 

Shallow-water wave A wave which mobilises the entire water depth, down to 
the bed and therefore is influenced by the bed due to the 
phenomenon of shoaling. According to linear wave the-
ory, L/h > 20 for such waves. The opposite is the deep-
water wave. 

Shoaling Wave transformation in the vicinity of the shore due to 
the decrease of the still water depth. 
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Sine wave See linear wave. 

Slide properties Properties which relate to the slide mass including the 
porosity; they are indicated by the subscript s (Vs, ρs). 

Solitary wave Theoretical, non-linear wave type consisting only of a 
wave crest but no wave trough (Figure 2-5). This wave 
type is used as approximation for certain impulse 
waves. 

Stokes wave Theoretical, non-linear wave type which is somewhat 
steeper than a sine wave but has a rather flatter and 
longer trough (Figure 2-3). This wave type approxi-
mates to certain impulse waves. 

Total reflection A wave is reflected by a vertical shore and moves back 
without any loss of height. 

Translatory wave The water particles move in the direction of movement 
of the wave and both energy and fluid mass are trans-
ported.  

Tsunami From the Japanese “tsu” for harbour and “nami” for 
wave. Caused by a sudden movement of a large volume 
of water, as a result of earthquakes (seismic sea waves) 
but also subaerial or underwater slides, meteorite im-
pacts, volcanic explosions, releases of natural gas etc. 

Wave breaking See breaking. 

Wave crest That part of a wave above the original still water level. 

Wave peak The highest point of a wave.  

Wave trough That part of the wave which is below the original still 
water level. 

Wave type product The product S 
1/3M cos[(6/7)α], composed only of gov-

erning parameters, which Heller (2007) and Heller and 
Hager (2011) use to distinguish the four observed wave 
types from each other. 

2D tests Two-dimensional: tests carried out in a prismatic wave 
channel, with the wave parameters measured only in the 
centre of the channel. The impulse waves propagate 
longitudinally and may therefore be considered 2D. 
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3D tests Three-dimensional: tests carried out in a rectangular 
wave basin in which the wave parameter measurements 
can be conducted over the whole water surface area. 
The impulse waves propagate freely, radiating from the 
slide impact location, and may therefore be considered 
3D. 
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A Wave overtopping at granular dams 

While wave overtopping at rigid structures including vertical walls (β = 90°) in consid-
ered in Subsection 3.3.4, this appendix focuses on the wave overtopping process at 
granular dams, which is subject to erosion by water overflow. This approach is not 
included in the computational procedure of Step 1, as the up-scaling of the erosion 
process from laboratory to prototype dimensions involves high uncertainties. The equa-
tions presented below therefore provide only a rough estimation. Nonetheless, the equa-
tions of this approach are included in the computational tool (Section 5.5).  

The equations for the prediction of the overtopping process at granular dams are 
taken from Huber et al. (2017). The general definition of the predicted values is similar 
to wave overtopping at rigid dams addressed in Section 3.3.4. However, the eroded crest 
depth is calculated as an additional target value (Figure A-1). 

Figure A-1 Sketch defining the parameters for the wave run-up and dam overtopping at a granular dam. 

The overtopping volume V per unit dam crest length is calculated with 

V
1/92.5

20.11.53
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a [m] = Wave crest amplitude (in front of the dam) (Figure A-1) 
bK [m] = Dam crest width (Figure A-1) 
h [m] = Still water depth (in front of the dam) 
V [m3/m] = Overtopping volume per unit dam crest length 
w [m] = Dam height (Figure A-1) 
β  [°] = Run-up angle equal to upstream dam face slope (Figure A-1) 
ε [-] = Relative wave crest amplitude; ε = a/h 

The maximum wave overtopping flow depth is determined with  
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a [m]  = Wave crest amplitude (in front of the dam) (Figure A-1) 
d0 [m]  = Maximum wave overtopping flow depth (Figure A-1) 
h [m] = Still water depth (in front of the dam) 
w [m] = Dam height (Figure A-1) 
β  [°] = Run-up angle equal to upstream dam face slope (Figure A-1) 
ε [-]  = Relative wave crest amplitude; ε = a/h 

 
The wave overtopping duration is given by 
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a [m]  = Wave crest amplitude (in front of the dam) (Figure A-1) 
bK [m]  = Dam crest width (Figure A-1) 
g [m/s2] = Gravitational acceleration; g = 9.81 m/s2  
h [m] = Still water depth (in front of the dam) 
tO [s]  = Wave overtopping duration 
w [m] = Dam height (Figure A-1) 
β  [°] = Run-up angle equal to upstream dam face slope (Figure A-1) 
ε [-]  = Relative wave crest amplitude; ε = a/h 

 
The average discharge per unit dam crest length qm is determined from 

 
qm = V /tO. (A.4) 

 
qm [m2/s] = Average unit discharge 
tO [s] = Duration of overtopping (Eq. A.3) 
V [m3/m] = Overtopping volume (Eq. A.1) 

 
Similar to overtopping at rigid dams, the maximum discharge may be estimated by 
q0M ≈ 2q0m if the freeboard is small compared to the still water depth, i.e. f ≪ h. 

The eroded crest depth he is defined as the vertical distance between the maximum 
crest elevation before and after wave overtopping (Figure A-1). It is given by 
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a [m]  = Wave crest amplitude (in front of the dam) (Figure A-1) 
bK [m]  = Dam crest width (Figure A-1) 
h [m] = Still water depth (in front of the dam) 
he [m]  = Eroded crest depth (Figure A-1) 
w [m] = Dam height (Figure A-1) 
β  [°] = Run-up angle equal to upstream dam face slope (Figure A-1) 
ε [-]  = Relative wave crest amplitude; ε = a/h 

 
Equations (A.1) to (A.5) were derived from experiments with solitary waves (a/H = 

1), which are characterised by a large horizontal mass transport (Section 2.2). Therefore, 
this wave type represents an extreme case. Moreover, the experiments on which the 
equations are based were conducted with homogeneous model embankment dams com-
posed of non-cohesive sediment grains with diameters between 1.23 and 2.68 mm. 
Consequently, the experimental setup corresponds to a dam structure without any safety 
reserves. Dams at prototype scale typically feature impervious cores as well as surface 
protection including riprap. Particularly, the calculated values of the eroded crest depth 
he (Eq. A.5) should be regarded as a worst-case scenario. Limitations on the use of Eqs. 
(A.1) to (A.5) are shown in Table A-1. 

 

Table A-1 Limitations to calculate wave overtopping at granular dams. 

Term Range Term Range 

Relative wave crest amplitude  0.25 ≤ ε ≤ 0.75 Run-up angle 18.4° ≤ β ≤ 33.3° 

Wave-freeboard ratio 0.8 ≤ a/f ≤ 11.4 Non-linearity a/H = 1.00 

Relative still water depth 0.70 ≤ h/w ≤ 0.95 Relative crest width 0 ≤ bK/w ≤ 0.5 
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Addendum: Shallow slide impact angles 15° ≤ α ≤ 30° 

Frederic M. Evers, Felix Bross 

The impulse wave manual (Evers et al. 20191, abbr. IWM) allows for the estimation of 

the most important wave properties related to landslide-generated impulse wave events 

in reservoirs, e.g. wave amplitudes and run-up heights. The computational procedure 

presented in the IWM is based on generally applicable equations developed from lab 

model tests. Consequently, the equations’ applicability ranges are limited by their un-

derlying experimental parameter ranges (IWM Section 3.2.4.1). In case the equations’ 

input parameters exceed these limitations, the results of the computational procedure are 

subject to additional uncertainties (IWM Section 4.7). Especially the lower limitation of 

the slide impact angle with α ≥ 30° (IWM Tables 3-2 and 3-3) has been identified as too 

steep for the assessment of hazard scenarios at prototype scale. To extend the IWM’s 

applicability range, 109 additional hydraulic experiments were conducted in a wave 

channel, i.e. for the extreme case of confined 2D wave propagation (IWM Section 

3.2.1), with shallow slide impact angles α = 15°, 22.5° and 30°.  

 
Figure 1 Percentage deviation of the measured from the predicted maximum wave amplitudes 

∆aM versus the impulse product parameter P; 15° ≤ α ≤ 30° (filled markers), 30° ≤ α ≤ 90° 

(hollow markers); box plot antennas at 5th and 95th percentiles. 

Figure 1 shows the percentage deviation of the measured from the predicted maxi-

mum wave amplitudes aM = (4/5)HM (IWM Eqs. 3.13 and 3.16), defined as 

∆aM = (aM,measured  ⁄ aM,predicted) – 1 [%], versus the impulse product parameter P (IWM 

Eq. 3.12). In addition to the experiments with 15° ≤ α ≤ 30°, also 278 selected experi-

ments with 30° ≤ α ≤ 90° from the original data set of the IWM’s 2D equations (IWM 

Section 3.2.4.2) are included in Fig. 1 for comparison. The deviations shown in the box 

plot for 15° ≤ α ≤ 30° are within a similar range as for 30° ≤ α ≤ 90°. Figure 2 shows the 

percentage deviation ∆a(x) of the measured wave amplitudes from the predicted values 

                                            
1 Evers, F.M., Heller, V., Fuchs, H., Hager, W.H., Boes, R.M. (2019). Landslide-generated Impulse 

Waves in Reservoirs – Basics and Computation. VAW‐Mitteilung 254 (R. Boes, ed.), ETH Zurich, Zürich. 

https://doi.org/10.3929/ethz-b-000413216  
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a(x) = (4/5)H(x) (IWM Eqs. 3.16 and 3.19) along the relative streamwise distance 

X = x/h (with the still water depth h). Again, the deviations for 15° ≤ α ≤ 30° are within 

a similar range as for 30° ≤ α ≤ 90°. Since no distinct deviations were observed for 

shallow slide impact angles 15° ≤ α ≤ 30° compared to 30° ≤ α ≤ 90° (Figures 1 and 2), 

the limitations for the computation of 2D impulse wave generation and propagation can 

be extended to 15° ≤ α ≤ 90°. Table 1 includes the extended parameter range for α as 

well as F, M, and P and replaces IWM Table 3-2. 

 
Figure 2 Percentage deviation of the measured from the predicted wave amplitudes ∆a(x) along the 

relative streamwise distance X; 15° ≤ α ≤ 30° (filled markers), 30° ≤ α ≤ 90° (hollow mark-

ers); box plot antennas at 5th and 95th percentiles. 

Table 1 Extended limitations to compute 2D impulse wave generation and propagation. 

Term Range Definition 

Slide Froude number  0.47 ≤ F ≤ 6.83 F = Vs/(gh)1/2 

Relative slide thickness 0.05 ≤ S ≤ 1.64 S = s/h 

Relative slide mass 0.05 ≤ M ≤ 10.02 M = ρsVs/(ρwbh2) 

Relative slide density 0.59 ≤ D ≤ 1.72 D = ρs/ρw 

Relative granulate density 0.96 ≤ ρg/ρw ≤ 2.75 ρg/ρw 

Relative slide volume 0.05 ≤ V ≤ 5.94 V = Vs/(bh2) 

Bulk slide porosity 30.7% ≤ n ≤ 43.3% n 

Slide impact angle 15° ≤ α ≤ 90° α 

Relative slide width 0.74 ≤ B ≤ 3.33 B = b/h 

Relative streamwise distance 2.7 ≤ X ≤ 59.2 X = x/h 

Impulse product parameter 0.08 ≤ P ≤ 8.13 P = FS1/2M1/4{cos[(6/7)α]}1/2 

For the extreme case of 3D impulse wave generation and propagation, no additional 

hydraulic experiments were conducted with shallow impact angles α < 30°. However, 

similar to the extension to a wider parameter range of the slide density to include snow 

avalanches based on P (IWM Section 3.2.4.3), the IWM’s Eqs. (3.22) to (3.35) for 3D 

impulse wave generation and propagation can also be applied with slide impact angles 

15° ≤ α ≤ 90° for a preliminary hazard assessment if 0.13 ≤ P ≤ 2.08 (IWM Table 3-3). The 

computational tool has been updated (v1.1) to incorporate the extended ranges for α and 

is available for download2.  

                                            
2 https://doi.org/10.5281/zenodo.4715565  
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